Deck 49: The Inverse of a Square Matrix

ملء الشاشة (f)
exit full mode
سؤال
Find the inverse of the matrix (if it exists). ​​ [1237]\left[ \begin{array} { l l } 1 & 2 \\3 & 7\end{array} \right]

A)​ [7231]\left[ \begin{array} { l l } 7 & 2 \\3 & 1\end{array} \right]
B)​ [7231]\left[ \begin{array} { c c } 7 & - 2 \\- 3 & 1\end{array} \right]
C)​ [7231]\left[ \begin{array} { l l } - 7 & - 2 \\- 3 & - 1\end{array} \right]
D)​ [7231]\left[ \begin{array} { c c } - 7 & - 2 \\3 & 1\end{array} \right]
E)​ [7231]\left[ \begin{array} { c c } - 7 & 2 \\3 & - 1\end{array} \right]
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). ​​ [2315]\left[ \begin{array} { l l } 2 & 3 \\1 & 5\end{array} \right]

A)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { l l } 5 & 3 \\1 & 2\end{array} \right]
B)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { c c } - 5 & - 3 \\1 & 2\end{array} \right]
C)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { c c } - 5 & 3 \\1 & - 2\end{array} \right]
D)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { c c } 5 & - 3 \\- 1 & 2\end{array} \right]
E)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { l l } - 5 & - 3 \\- 1 & - 2\end{array} \right]
سؤال
Solve the system of linear equations. ​​ {x2y=02x3y=8\left\{ \begin{array} { l } x - 2 y = 0 \\2 x - 3 y = 8\end{array} \right.

A)​ (16,8)( 16,8 )
B)​ (16,8)( 16 , - 8 )
C)​ (8,16)( - 8,16 )
D)​ (8,16)( 8,16 )
E)​ (16,8)( - 16,8 )
سؤال
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists).​ [67513]\left[ \begin{array} { c c } 6 & 7 \\- 5 & 13\end{array} \right]

A)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } 13 & - 7 \\5 & 6\end{array} \right]
B)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } - 13 & 7 \\5 & - 6\end{array} \right]
C)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } - 13 & - 7 \\5 & 6\end{array} \right]
D)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } 13 & 7 \\5 & 6\end{array} \right]
E)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } - 13 & - 7 \\- 5 & - 6\end{array} \right]
سؤال
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the matrix (if it exists). ​​ [7979]\left[ \begin{array} { c c } - 7 & - 9 \\7 & 9\end{array} \right]

A)​ [9977]\left[ \begin{array} { c c } - 9 & - 9 \\7 & 7\end{array} \right]
B)​ [9977]\left[ \begin{array} { r r } - 9 & - 9 \\- 7 & - 7\end{array} \right]
C)​ [9977]\left[ \begin{array} { c c } - 9 & 9 \\7 & - 7\end{array} \right]
D) [9977]\left[ \begin{array} { c c } 9 & - 9 \\7 & 7\end{array} \right]
E)​Does not exist
سؤال
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). ​​ [1232]\left[ \begin{array} { c c } 1 & - 2 \\- 3 & 2\end{array} \right]

A)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { c c } - 2 & - 2 \\3 & 1\end{array} \right]
B)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { l l } - 2 & - 2 \\- 3 & - 1\end{array} \right]
C)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { l l } 2 & 2 \\3 & 1\end{array} \right]
D)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { c c } - 2 & 2 \\3 & - 1\end{array} \right]
E)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { c c } 2 & - 2 \\3 & 1\end{array} \right]
سؤال
Find the inverse of the matrix (if it exists).​ [3004]\left[ \begin{array} { l l } 3 & 0 \\0 & 4\end{array} \right]

A)​ [140014]\left[ \begin{array} { l l } \frac { 1 } { 4 } & 0 \\0 & \frac { 1 } { 4 }\end{array} \right]
B)​ [14000]\left[ \begin{array} { l l } \frac { 1 } { 4 } & 0 \\0 & 0\end{array} \right]
C)​ [014140]\left[ \begin{array} { c c } 0 & \frac { 1 } { 4 } \\\frac { 1 } { 4 } & 0\end{array} \right]
D)​ [140013]\left[ \begin{array} { l l } \frac { 1 } { 4 } & 0 \\0 & \frac { 1 } { 3 }\end{array} \right]
E)​ [130014]\left[ \begin{array} { l l } \frac { 1 } { 3 } & 0 \\0 & \frac { 1 } { 4 }\end{array} \right]
سؤال
Find the inverse of the matrix (if it exists).​ [6778]\left[ \begin{array} { l l } 6 & - 7 \\7 & - 8\end{array} \right]

A)​ [8776]\left[ \begin{array} { c c } - 8 & 7 \\7 & 6\end{array} \right]
B)​ [8776]\left[ \begin{array} { c c } - 8 & 7 \\- 7 & 6\end{array} \right]
C)​ [8776]\left[ \begin{array} { c c } - 8 & - 7 \\- 7 & 6\end{array} \right]
D)​ [8776]\left[ \begin{array} { c c } - 8 & 7 \\7 & - 6\end{array} \right]
E)​ [8776]\left[ \begin{array} { c c } - 8 & - 7 \\7 & 6\end{array} \right]
سؤال
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). ​​ [12352]\left[ \begin{array} { c c } - 12 & 3 \\5 & 2\end{array} \right]

A)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { c c } 2 & - 3 \\- 5 & - 12\end{array} \right]
B)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { c c } - 2 & - 3 \\5 & 12\end{array} \right]
C)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { c c } - 2 & 3 \\5 & - 12\end{array} \right]
D)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { c c } 2 & - 3 \\5 & 12\end{array} \right]
E)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { l l } - 2 & - 3 \\- 5 & - 12\end{array} \right]
سؤال
Find the inverse of the matrix (if it exists).​ [4131]\left[ \begin{array} { c c } 4 & - 1 \\- 3 & 1\end{array} \right]

A)​ [1134]\left[ \begin{array} { l l } 1 & 1 \\3 & 4\end{array} \right]
B)​ [1134]\left[ \begin{array} { c c } 1 & 1 \\- 3 & 4\end{array} \right]
C)​ [1134]\left[ \begin{array} { c c } - 1 & 1 \\3 & 4\end{array} \right]
D)​ [1134]\left[ \begin{array} { c c } 1 & 1 \\3 & - 4\end{array} \right]
E)Does not exist
سؤال
Use an inverse matrix to solve (if possible)the system of linear equations.​ {3x+4y=25x+3y=4\left\{ \begin{array} { l } 3 x + 4 y = - 2 \\5 x + 3 y = 4\end{array} \right.

A)​ (2,2)( - 2,2 )
B)​ (2,2)( 2,2 )
C)​ (2,2)( - 2 , - 2 )
D)​ (2,2)( 2 , - 2 )
E)​ (1,2)( - 1,2 )
سؤال
Find the inverse of the matrix (if it exists).​ [40060051111]\left[ \begin{array} { c c c } 4 & 0 & 0 \\6 & 0 & 0 \\5 & 11 & 11\end{array} \right]

A)​ [4006005411]\left[ \begin{array} { c c c } - 4 & 0 & 0 \\- 6 & 0 & 0 \\5 & 4 & 11\end{array} \right]
B)​ [4006005411]\left[ \begin{array} { c c c } - 4 & 0 & 0 \\- 6 & 0 & 0 \\- 5 & - 4 & - 11\end{array} \right]
C)​ [4006005411]\left[ \begin{array} { c c c } 4 & 0 & 0 \\6 & 0 & 0 \\5 & 4 & 11\end{array} \right]
D)​ [4006005411]\left[ \begin{array} { c c c } - 4 & 0 & 0 \\- 6 & 0 & 0 \\- 5 & 4 & 11\end{array} \right]
E)Does not exist
سؤال
Solve the system of linear equations.​ {x+y+z=73x+5y+4z=83x+6y+5z=0\left\{ \begin{array} { c } x + y + z = - 7 \\3 x + 5 y + 4 z = 8 \\3 x + 6 y + 5 z = 0\end{array} \right.

A)​ (2,37,45)( 2,37 , - 45 )
B)​ (1,37,45)( - 1,37 , - 45 )
C)​ (1,37,45)( - 1 , - 37 , - 45 )
D)​ (1,37,45)( 1,37 , - 45 )
E)​ (1,38,45)( 1,38 , - 45 )
سؤال
Solve the system of linear equations.​ {x2y=62x3y=4\left\{ \begin{array} { c } x - 2 y = 6 \\2 x - 3 y = 4\end{array} \right. ​ ​

A)​ (10,8)( - 10 , - 8 )
B)​ (10,8)( - 10,8 )
C)​ (10,4)( - 10,4 )
D)​ (4,10)( - 4 , - 10 )
E)​ (10,8)( 10,8 )
سؤال
Find the inverse of the matrix (if it exists).​ [733419]\left[ \begin{array} { c c } - 7 & 33 \\4 & - 19\end{array} \right]

A)​ [193347]\left[ \begin{array} { c c } - 19 & - 33 \\4 & - 7\end{array} \right]
B)​ [193347]\left[ \begin{array} { c c } - 19 & - 33 \\- 4 & - 7\end{array} \right]
C)​ [193347]\left[ \begin{array} { c c } 19 & - 33 \\- 4 & - 7\end{array} \right]
D)​ [193347]\left[ \begin{array} { c c } 19 & - 33 \\4 & - 7\end{array} \right]
E)​ [193347]\left[ \begin{array} { c c } 19 & - 33 \\4 & 7\end{array} \right]
سؤال
Solve the system of linear equations.​ {x2y=52x3y=10\left\{ \begin{array} { l l } x - 2 y & = 5 \\2 x - 3 y & = 10\end{array} \right.

A)​ (5,10)( 5,10 )
B)​ (5,5)( 5,5 )
C)​ (10,5)( 10,5 )
D)​ (5,0)( 5,0 )
E)​ (0,5)( 0,5 )
سؤال
Solve the system of linear equations.​ {x2y=32x3y=4\left\{ \begin{array} { l } x - 2 y = 3 \\2 x - 3 y = - 4\end{array} \right.

A)​ (17,4)( - 17,4 )
B)​ (17,10)( - 17,10 )
C)​ (4,17)( - 4 , - 17 )
D)​ (17,10)( 17,10 )
E)​ (17,10)( - 17 , - 10 )
سؤال
Find the inverse of the matrix (if it exists).​ [500200157]\left[ \begin{array} { c c c } - 5 & 0 & 0 \\2 & 0 & 0 \\1 & 5 & 7\end{array} \right]

A)​ [500200157]\left[ \begin{array} { l l l } 5 & 0 & 0 \\2 & 0 & 0 \\1 & 5 & 7\end{array} \right]
B)​ [500200157]\left[ \begin{array} { c c c } - 5 & 0 & 0 \\- 2 & 0 & 0 \\1 & 5 & 7\end{array} \right]
C) [500200157]\left[ \begin{array} { c c c } - 5 & 0 & 0 \\- 2 & 0 & 0 \\- 1 & - 5 & - 7\end{array} \right]
D)​ [500200157]\left[ \begin{array} { l l l } - 5 & 0 & 0 \\- 2 & 0 & 0 \\- 1 & 5 & 7\end{array} \right]
E)​Does not exist
سؤال
Solve the system of linear equations.​ {x+y+z=03x+5y+4z=93x+6y+5z=6\left\{ \begin{array} { l } x + y + z = 0 \\3 x + 5 y + 4 z = 9 \\3 x + 6 y + 5 z = 6\end{array} \right.

A)​ (3,12,15)( 3,12 , - 15 )
B)​ (3,12,15)( 3,12,15 )
C)​ (3,12,15)( - 3 , - 12 , - 15 )
D)​ (3,12,15)( 3 , - 12 , - 15 )
E)​ (3,12,15)( - 3,12 , - 15 )
سؤال
​Use an inverse matrix to solve (if possible)the system of linear equations.​ {18x+12y=1430x+24y=24\left\{ \begin{array} { l } 18 x + 12 y = 14 \\30 x + 24 y = 24\end{array} \right.

A)​( 56\frac { 5 } { 6 } , 16\frac { 1 } { 6 } )
B)​( 4, 16\frac { 1 } { 6 } )
C)​( 23\frac { 2 } { 3 } , 16\frac { 1 } { 6 } )
D)​( 23\frac { 2 } { 3 } , 14\frac { 1 } { 4 } )
E)​( 23\frac { 2 } { 3 } ,3 )
سؤال
The table shows the enrollment projections (in millions)for public universities in the United States for the years 2010 through 2012.
Year
Enrollment projections
2010
13)83
2011
14)07
2012
14)23
The data can be modeled by the quadratic function y=at2+bt+cy=a t^{2}+b t+c .Create a system of linear equations for the data.Let t represent the year,with t = 10 corresponding to 2010.

A) {100a+10b+c=13.83121a11b+c=14.07144a+12b+c=14.23\left\{ \begin{array} { l } 100 a + 10 b + c = 13.83 \\121 a - 11 b + c = 14.07 \\144 a + 12 b + c = 14.23\end{array} \right.
B)​ {100a10b+c=13.83121a+11b+c=14.07144a+12b+c=14.23\left\{ \begin{array} { l } 100 a - 10 b + c = 13.83 \\121 a + 11 b + c = 14.07 \\144 a + 12 b + c = 14.23\end{array} \right.
C)​ {100a+10b+c=13.83121a+11b+c=14.07144a+12b+c=14.23\left\{ \begin{array} { l } 100 a + 10 b + c = 13.83 \\121 a + 11 b + c = 14.07 \\144 a + 12 b + c = 14.23\end{array} \right.
D)​ {100a+10b+c=13.83121a+11b+c=14.07144a+12bc=14.23\left\{ \begin{array} { l } 100 a + 10 b + c = 13.83 \\121 a + 11 b + c = 14.07 \\144 a + 12 b - c = 14.23\end{array} \right.
E)​ {100a10bc=13.83121a11bc=14.07144a12bc=14.23\left\{ \begin{array} { l } 100 a - 10 b - c = 13.83 \\121 a - 11 b - c = 14.07 \\144 a - 12 b - c = 14.23\end{array} \right.
سؤال
Consider a person who invests in AAA-rated bonds,A-rated bonds,and B-rated bonds.The average yields are 6.5% on AAA bonds,7% on A bonds,and 9% on B bonds.The person invests twice as much in B bonds as in A bonds.Let x,y and z represent the amounts invested in AAA,A,and B bonds,respectively. Total Investment
Annual Return
$12,000
890 {x+y+z=12,000 (total investment) 0.065x+0.07y+0.09z=890 (annual retum) 2yz=0\left\{ \begin{array} { c l } x + y + z & = 12,000 \text { (total investment) } \\0.065 x + 0.07 y + 0.09 z & = 890 \text { (annual retum) } \\2 y - z & = 0\end{array} \right. Use the inverse of the coefficient matrix of this system to find the amount invested in each type of bond.

A)$7,000 in AAA-rated bonds $2,000 in A-rated bonds
$4,000 in B-rated bonds
B)$5,000 in AAA-rated bonds $7,000 in A-rated bonds
$3,000 in B-rated bonds
C)$5,000 in AAA-rated bonds $6,000 in A-rated bonds
$4,000 in B-rated bonds
D)$3,000 in AAA-rated bonds $2,000 in A-rated bonds
$6,000 in B-rated bonds
E)$6,000 in AAA-rated bonds $2,000 in A-rated bonds
$4,000 in B-rated bonds
سؤال
Find the inverse of the matrix [24610]\left[ \begin{array} { c c } 2 & 4 \\- 6 & - 10\end{array} \right] .

A)​ 113[24610]\frac { 1 } { 13 } \left[ \begin{array} { l l } - 2 & - 4 \\- 6 & 10\end{array} \right]
B)​ [24106]\left[ \begin{array} { c c } - 2 & - 4 \\10 & 6\end{array} \right]
C)​ [26814]\left[ \begin{array} { c c } 2 & - 6 \\8 & - 14\end{array} \right]
D)​ 17[24610]\frac { 1 } { 7 } \left[ \begin{array} { c c } 2 & 4 \\- 6 & - 10\end{array} \right]
E)​ 12[5231]\frac { 1 } { 2 } \left[ \begin{array} { c c } - 5 & - 2 \\3 & 1\end{array} \right]
سؤال
Find the inverse of the matrix [1432]\left[ \begin{array} { c c } - 1 & 4 \\3 & - 2\end{array} \right] (if it exists).

A)​ 110[2431]- \frac { 1 } { - 10 } \left[ \begin{array} { l l } - 2 & - 4 \\- 3 & - 1\end{array} \right]
B) 110[1432]- \frac { 1 } { - 10 } \left[ \begin{array} { c c } - 1 & 4 \\3 & - 2\end{array} \right]
C)​ 110[2431]\frac { 1 } { - 10 } \left[ \begin{array} { l l } - 2 & - 4 \\- 3 & - 1\end{array} \right]
D)​ 110[2431]\frac { 1 } { - 10 } \left[ \begin{array} { l l } 2 & 4 \\3 & 1\end{array} \right]
E)​does not exist
سؤال
A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​
875 units of beef
830 units of chicken
850 units of liver

A)765 muffins,5 bones,50 cookies
B)50 muffins,765 bones,50 cookies
C)5 muffins,765 bones,50 cookies
D)50 muffins,765 bones,5 cookies
E)5 muffins,5 bones,830 cookies
سؤال
A florist is creating 10 centerpieces for the tables at a wedding reception.Roses cost $2.50 each,lilies cost $8 each,and irises cost $4 each.The customer has a budget of $300 allocated for the centerpieces and wants each centerpiece to contain 12 flowers,with twice as many roses as the number of irises and lilies combined. ​
Write a system of linear equations that represents the situation.

A) {2.5r8l4i=300r2l2i=0rli=120\left\{ \begin{array} { l l } 2.5 r - 8 l - 4 i & = 300 \\- r - 2 l - 2 i & = 0 \\r - l - i & = 120\end{array} \right.
B)​ {2.5r+8l+4i=300r+2l+2i=0r+l+i=120\left\{ \begin{array} { l l } 2.5 r + 8 l + 4 i & = 300 \\r + 2 l + 2 i & = 0 \\r + l + i & = 120\end{array} \right.
C)​ {2.5r+8l+4i=300r+2l+2i=0r+l+i=120\left\{ \begin{array} { l l } 2.5 r + 8 l + 4 i & = 300 \\- r + 2 l + 2 i & = 0 \\r + l + i & = 120\end{array} \right.
D)​ {2.5r8l+4i=300r+2l+2i=0r+l+i=120\left\{ \begin{array} { l l } 2.5 r - 8 l + 4 i & = 300 \\- r + 2 l + 2 i & = 0 \\r + l + i & = 120\end{array} \right.
E)​ {2.5r+8l4i=300r+2l+2i=0r+l+i=120\left\{ \begin{array} { l l } 2.5 r + 8 l - 4 i & = 300 \\- r + 2 l + 2 i & = 0 \\r + l + i & = 120\end{array} \right.
سؤال
​Solve the system of linear equations {2x+3y=154x3y=10\left\{ \begin{array} { l } 2 x + 3 y = - 15 \\4 x - 3 y = 10\end{array} \right. using the inverse matrix [16162919]\left[ \begin{array} { c c } \frac { 1 } { 6 } & \frac { 1 } { 6 } \\\\\frac { 2 } { 9 } & - \frac { 1 } { 9 }\end{array} \right]

A)​ [xy]=[5652]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 5 } { 6 } \\\\\frac { 5 } { 2 }\end{array} \right]
B)​ [xy]=[56409]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } - \frac { 5 } { 6 } \\\\- \frac { 40 } { 9 }\end{array} \right]
C)​ [xy]=[251852]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 25 } { 18 } \\\\\frac { 5 } { 2 }\end{array} \right]
D)​ [xy]=[520]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 5 } { 2 } \\0\end{array} \right]
E)​ [xy]=[5356]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } - \frac { 5 } { 3 } \\\\\frac { 5 } { 6 }\end{array} \right]
سؤال
Use an inverse matrix to solve (if possible)the system of linear equations.​ {0.2x0.6y=14.4x+1.4y=20.8\left\{ \begin{array} { l } 0.2 x - 0.6 y = 14.4 \\- x + 1.4 y = - 20.8\end{array} \right.

A)(-24,-31)
B)(-23,-32)
C)(-22,-32)
D)(-24,-32)
E)(-23,-30)
سؤال
​Use an inverse matrix to solve (if possible)the system of linear equations.​ {1.8x5y=428.8x16y=5\left\{ \begin{array} { l l } 1.8 x - 5 y & = 4 \\28.8 x - 16 y & = 5\end{array} \right.

A)​( 116\frac { 1 } { 16 } ,16)
B)​(0,0)
C)​( 116\frac { 1 } { 16 } , 516\frac { 5 } { 16 } )
D)​(16,16)
E)​No solution
سؤال
A coffee manufacturer sells a 14-pound package that contains three flavors of coffee for $25.French vanilla coffee costs $5 per pound,hazelnut flavored coffee costs $5.50 per pound,and Swiss chocolate flavored coffee costs $6 per pound.The package contains the same amount of hazelnut as Swiss chocolate.Let f represent the number of pounds of French vanilla,h represent the number of pounds of hazelnut,and s represent the number of pounds of Swiss chocolate. ​
Write a system of linear equations that represents the situation.

A) {5f5.5h+6s=25f+h+s=14hs=0\left\{ \begin{array} { c l } 5 f - 5.5 h + 6 s & = 25 \\f + h + s & = 14 \\h - s & = 0\end{array} \right.
B)​ {5f+5.5h+6s=25f+h+s=14hs=0\left\{ \begin{aligned}5 f + 5.5 h + 6 s & = 25 \\f + h + s & = 14 \\h - s & = 0\end{aligned} \right.
C)​ {5f5.5h+6s=25fh+s=14hs=0\left\{ \begin{array} { c l } 5 f - 5.5 h + 6 s & = 25 \\f - h + s & = 14 \\h - s & = 0\end{array} \right.
D)​ {5f5.5h+6s=25f+h+s=14h+s=0\left\{ \begin{array} { c l } 5 f - 5.5 h + 6 s & = 25 \\f + h + s & = 14 \\h + s & = 0\end{array} \right.
E)​ {5f5.5h6s=25fhs=14h+s=0\left\{ \begin{array} { c l } 5 f - 5.5 h - 6 s & = 25 \\f - h - s & = 14 \\h + s & = 0\end{array} \right.
سؤال
Find the inverse of the matrix [1622811]\left[ \begin{array} { c c } - 16 & 22 \\- 8 & 11\end{array} \right] (if it exists).

A)does not exist
B)​ 116- \frac { 1 } { 16 } [1122816]\left[ \begin{array} { c c } 11 & - 22 \\8 & - 16\end{array} \right]
C)​ 111\frac { 1 } { 11 } [1622811]\left[ \begin{array} { c c } - 16 & 22 \\- 8 & 11\end{array} \right]
D)​ 122- \frac { 1 } { 22 } [1122816]\left[ \begin{array} { c c } - 11 & 22 \\- 8 & 16\end{array} \right]
E)​ 18\frac { 1 } { 8 } [1122816]\left[ \begin{array} { c c } 11 & - 22 \\8 & - 16\end{array} \right]
سؤال
Consider a person who invests in AAA-rated bonds,A-rated bonds,and B-rated bonds.The average yields are 6.5% on AAA bonds,7% on A bonds,and 9% on B bonds.The person invests twice as much in B bonds as in A bonds.Let x,y and z represent the amounts invested in AAA,A,and B bonds,respectively. Total Investment
Annual Return
$32,000
2465 {x+y+z=32,000 (total investment) 0.065x+0.07y+0.09z=2465 (annual retur) 2yz=0\left\{ \begin{array} { c l } x + y + z & = 32,000 \text { (total investment) } \\0.065 x + 0.07 y + 0.09 z & = 2465 \text { (annual retur) } \\2 y - z & = 0\end{array} \right. Use the inverse of the coefficient matrix of this system to find the amount invested in each type of bond.

A)$11,000 in AAA-rated bonds $7,000 in A-rated bonds
$14,000 in B-rated bonds
B)$11,000 in AAA-rated bonds $14,000 in A-rated bonds
$7,000 in B-rated bonds
C)$14,000 in AAA-rated bonds $11,000 in A-rated bonds
$7,000 in B-rated bonds
D)$14,000 in AAA-rated bonds $7,000 in A-rated bonds
$11,000 in B-rated bonds
E)$7,000 in AAA-rated bonds $11,000 in A-rated bonds
$14,000 in B-rated bonds
سؤال
A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​
900 units of beef
700 units of chicken
800 units of liver

A)200 muffins,500 bones,200 cookies
B)200 muffins,500 bones,0 cookies
C)0 muffins,0 bones,700 cookies
D)500 muffins,0 bones,200 cookies
E)0 muffins,500 bones,200 cookies
سؤال
​Solve the system of linear equations {3x+6y=16x+8y=2\left\{ \begin{array} { l } 3 x + 6 y = 1 \\6 x + 8 y = 2\end{array} \right. using the inverse matrix [23121214]\left[ \begin{array} { c c } - \frac { 2 } { 3 } & \frac { 1 } { 2 } \\\frac { 1 } { 2 } & - \frac { 1 } { 4 }\end{array} \right]

A)​ [xy]=[11120]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 11 } { 12 } \\0\end{array} \right]
B)​ [xy]=[130]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 1 } { 3 } \\0\end{array} \right]
C)​ [xy]=[111213]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 11 } { 12 } \\\\\frac { 1 } { 3 }\end{array} \right]
D)​ [xy]=[1312]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 1 } { 3 } \\- \frac { 1 } { 2 }\end{array} \right]
E)​ [xy]=[1213]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } - \frac { 1 } { 2 } \\\frac { 1 } { 3 }\end{array} \right]
سؤال
Consider a person who invests in AAA-rated bonds,A-rated bonds,and B-rated bonds.The average yields are 6.5% on AAA bonds,7% on A bonds,and 9% on B bonds.The person invests twice as much in B bonds as in A bonds.Let x,y and z represent the amounts invested in AAA,A,and B bonds,respectively.  Total Investment  Annual Return $12,000890\begin{array} { | c | c | } \hline \text { Total Investment } & \text { Annual Return } \\\hline \$ 12,000 & 890 \\\hline\end{array} {x+y+z=663,000 (total investment) 0.065x+0.07y+0.09z=47,000 (annual retum) 2yz=0\left\{ \begin{array} { c l } x + y + z & = 663,000 \text { (total investment) } \\0.065 x + 0.07 y + 0.09 z & = 47,000 \text { (annual retum) } \\2 y - z & = 0\end{array} \right. Use the inverse of the coefficient matrix of this system to find the amount invested in each type of bond.

A)$142,000 in AAA-rated bonds $451,000 in A-rated bonds
$71,000 in B-rated bonds
B)$450,000 in AAA-rated bonds $71,000 in A-rated bonds
$142,000 in B-rated bonds
C)$143,000 in AAA-rated bonds $71,000 in A-rated bonds
$450,000 in B-rated bonds
D)$72,000 in AAA-rated bonds $450,000 in A-rated bonds
$142,000 in B-rated bonds
E)$450,000 in AAA-rated bonds $142,000 in A-rated bonds
$70,000 in B-rated bonds
سؤال
Use the matrix capabilities of a graphing utility to find the inverse of the matrix 19[453483120]\frac { 1 } { 9 } \left[ \begin{array} { c c c } - 4 & - 5 & 3 \\- 4 & - 8 & 3 \\1 & 2 & 0\end{array} \right] (if it exists).

A)​ [9126030039]\left[ \begin{array} { c c c } - 9 & 12 & 6 \\0 & - 3 & 0 \\0 & 3 & - 9\end{array} \right]
B)​ [6693300312]\left[ \begin{array} { c c c } - 6 & 6 & 9 \\3 & - 3 & 0 \\0 & 3 & 12\end{array} \right]
C)​ [609030036]\left[ \begin{array} { c c c } - 6 & 0 & 9 \\0 & - 3 & 0 \\0 & 3 & - 6\end{array} \right]
D) [3390300612]\left[ \begin{array} { c c c } 3 & 3 & 9 \\0 & - 3 & 0 \\0 & 6 & 12\end{array} \right]
E)​does not exist ​
سؤال
A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​
3,000 units of beef
2,950 units of chicken
2,900 units of liver

A)200 muffins,2,300 bones,200 cookies
B)150 muffins,150 bones,2,950 cookies
C)200 muffins,2,300 bones,150 cookies
D)2,300 muffins,150 bones,200 cookies
E)150 muffins,2,300 bones,200 cookies
سؤال
Find the inverse of the matrix [777213528214235]\left[ \begin{array} { c c c } 7 & 7 & 7 \\21 & 35 & 28 \\21 & 42 & 35\end{array} \right] . ​

A)​ 17[111321332]\frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right]
B)​ 17[111021332]\frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & - 2 & - 1 \\3 & - 3 & 2\end{array} \right]
C)​ 7[310311132]- 7 \left[ \begin{array} { c c c } 3 & 1 & 0 \\- 3 & 1 & - 1 \\1 & - 3 & 2\end{array} \right]
D)​ 17[101321233]- \frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 0 & - 1 \\- 3 & 2 & - 1 \\2 & - 3 & 3\end{array} \right]
E)​ 7[111301332]7 \left[ \begin{array} { c c c } 1 & 1 & 1 \\- 3 & 0 & - 1 \\3 & - 3 & 2\end{array} \right]
سؤال
Find the inverse of the following matrix.​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } \cos \theta & \sin \theta \\- \sin \theta & \cos \theta\end{array} \right]

A)​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } \cos \theta & - \sin \theta \\\sin \theta & \cos \theta\end{array} \right]
B)​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } - \cos \theta & - \sin \theta \\\sin \theta & \cos \theta\end{array} \right]
C)​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } \cos \theta & \sin \theta \\- \sin \theta & \cos \theta\end{array} \right]
D)​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } \cos \theta & \sin \theta \\- \sin \theta & - \cos \theta\end{array} \right]
E)​ [cosθsinθsinθcosθ]\left[ \begin{array} { l l } \cos \theta & - \sin \theta \\\sin \theta & - \cos \theta\end{array} \right]
سؤال
A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​
800 units of beef
750 units of chicken
725 units of liver

A)150 muffins,300 bones,150 cookies
B)150 muffins,300 bones,100 cookies
C)300 muffins,100 bones,150 cookies
D)100 muffins,300 bones,150 cookies
E)100 muffins,100 bones,750 cookies
سؤال
​Solve the system of linear equations {6x+18y+6z=112x+30y=218x+6y12z=1\left\{ \begin{array} { l l } - 6 x + 18 y + 6 z & = 1 \\12 x + 30 y & = 2 \\18 x + 6 y - 12 z & = - 1\end{array} \right. using an inverse matrix. ​

A)​ [xyz]=[161213]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 1 } { 6 } \\\\\frac { - 1 } { 2 } \\\\\frac { 1 } { 3 }\end{array} \right]
B)​ [xyz]=[161213]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 1 } { 6 } \\\\\frac { - 1 } { 2 } \\\\\frac { - 1 } { 3 }\end{array} \right]
C)​ [xyz]=[16012]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 1 } { 6 } \\0 \\\frac { 1 } { 2 }\end{array} \right]
D)​ [xyz]=[01316]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } 0 \\\frac { 1 } { 3 } \\\frac { - 1 } { 6 }\end{array} \right]
E)​ [xyz]=[16013]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } \frac { 1 } { 6 } \\0 \\\frac { 1 } { 3 }\end{array} \right]
سؤال
​Solve the system of linear equations​ {7x+7y+7z=021x+35y+28z=621x+42y+35z=1\left\{ \begin{array} { l l } 7 x + 7 y + 7 z & = 0 \\21 x + 35 y + 28 z & = 6 \\21 x + 42 y + 35 z & = 1\end{array} \right. ​using the inverse matrix 17[111321332]\frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right] .

A)​ [xyz]=[57117127]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 5 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 12 } { 7 }\end{array} \right]
B)​ [xyz]=[57117167]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 16 } { 7 }\end{array} \right]
C)​ [xyz]=[16757117]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 7 } \\\\\frac { 5 } { 7 } \\\\\frac { 11 } { 7 }\end{array} \right]
D)​ [xyz]=[12711757]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 12 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 5 } { 7 }\end{array} \right]
E)​ [xyz]=[57167117]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 5 } { 7 } \\\\\frac { - 16 } { 7 } \\\\\frac { 11 } { 7 }\end{array} \right]
سؤال
Find the inverse of A.​ A=[2341]A = \left[ \begin{array} { c c } 2 & 3 \\- 4 & 1\end{array} \right]

A)​ A1=[17372717]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 7 } & - \frac { 3 } { 7 } \\\\\frac { 2 } { 7 } & \frac { 1 } { 7 }\end{array} \right]
B)​ A1=[1143142717]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 14 } & - \frac { 3 } { 14 } \\\\\frac { 2 } { 7 } & \frac { 1 } { 7 }\end{array} \right]
C)​ A1=[1143727114]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 14 } & - \frac { 3 } { 7 } \\\\\frac { 2 } { 7 } & \frac { 1 } { 14 }\end{array} \right]
D)​ A1=[1143142717]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 14 } & \frac { 3 } { 14 } \\\frac { 2 } { 7 } & \frac { 1 } { 7 }\end{array} \right]
E)​ A1=[1737214114]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 7 } & - \frac { 3 } { 7 } \\\frac { 2 } { 14 } & \frac { 1 } { 14 }\end{array} \right]
سؤال
Find the inverse of the matrix.​ [105115511]\left[ \begin{array} { c c c } 1 & 0 & 5 \\1 & 1 & 5 \\- 5 & 1 & 1\end{array} \right]

A)​​ [2955110611]\left[ \begin{array} { c c c } - 29 & 5 & - 5 \\- 1 & 1 & 0 \\6 & 1 & 1\end{array} \right]
B) [4526526110626126126]\left[ \begin{array} { c c c } 4 & \frac { 5 } { 26 } & - \frac { 5 } { 26 } \\1 & 1 & 0 \\\frac { 6 } { 26 } & - \frac { 1 } { 26 } & \frac { 1 } { 26 }\end{array} \right]
C)​ [426526526110626126126]\left[ \begin{array} { c c c } - \frac { 4 } { 26 } & \frac { 5 } { 26 } & - \frac { 5 } { 26 } \\- 1 & 1 & 0 \\\frac { 6 } { 26 } & - \frac { 1 } { 26 } & \frac { 1 } { 26 }\end{array} \right]
D)​ [2955111611]\left[ \begin{array} { c c c } 29 & 5 & - 5 \\- 1 & 1 & - 1 \\6 & - 1 & 1\end{array} \right]
E)​ [2955111611]\left[ \begin{array} { c c c } 29 & 5 & - 5 \\- 1 & 1 & 1 \\6 & - 1 & 1\end{array} \right]
سؤال
Find the inverse of the matrix [81447]\left[ \begin{array} { c c } - 8 & 14 \\- 4 & 7\end{array} \right] (if it exists).

A)​ 14[71448]\frac { 1 } { 4 } \left[ \begin{array} { l l } 7 & - 14 \\4 & - 8\end{array} \right]
B)​ 18[71448]- \frac { 1 } { 8 } \left[ \begin{array} { c c } 7 & - 14 \\4 & - 8\end{array} \right]
C)​ 14[71448]- \frac { 1 } { 4 } \left[ \begin{array} { c c } - 7 & - 14 \\4 & 8\end{array} \right]
D)​ 17[81447]\frac { 1 } { 7 } \left[ \begin{array} { c c } - 8 & 14 \\- 4 & 7\end{array} \right]
E)does not exist
سؤال
Use a graphing calculator to find the inverse of the matrix.​ [1483014800140001]\left[ \begin{array} { l l l l } 1 & 4 & 8 & 3 \\0 & 1 & 4 & 8 \\0 & 0 & 1 & 4 \\0 & 0 & 0 & 1\end{array} \right] ​ ​

A)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & 4 & 8 & - 3 \\0 & 1 & - 4 & 8 \\0 & 0 & 1 & 4 \\0 & 0 & 0 & 1\end{array} \right]
B)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & - 4 & 8 & 3 \\0 & 1 & - 4 & 8 \\0 & 0 & 1 & - 4 \\0 & 0 & 0 & 1\end{array} \right]
C)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & - 4 & - 8 & - 3 \\0 & 1 & - 4 & - 8 \\0 & 0 & 1 & - 4 \\0 & 0 & 0 & 1\end{array} \right]
D)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & - 4 & 8 & - 3 \\0 & 1 & - 4 & 8 \\0 & 0 & 1 & - 4 \\0 & 0 & 0 & 1\end{array} \right]
E)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & 4 & 8 & - 3 \\0 & 1 & 4 & 8 \\0 & 0 & 1 & 4 \\0 & 0 & 0 & 1\end{array} \right]
سؤال
​Solve the system of linear equations {4x+4y=38x20y=9\left\{ \begin{array} { l } 4 x + 4 y = 3 \\8 x - 20 y = - 9\end{array} \right. using an inverse matrix.

A)​ [xy]=[3141528]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 3 } { 14 } \\\\\frac { 15 } { 28 }\end{array} \right]
B)​ [xy]=[928127]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 9 } { 28 } \\\\\frac { 12 } { 7 }\end{array} \right]
C)​ [xy]=[928314]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 9 } { 28 } \\\\\frac { - 3 } { 14 }\end{array} \right]
D)​ [xy]=[971528]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 9 } { 7 } \\\\\frac { 15 } { 28 }\end{array} \right]
E)​ [xy]=[97314]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { - 9 } { 7 } \\\\\frac { - 3 } { 14 }\end{array} \right]
سؤال
Find the inverse of the matrix.​ [152015001]\left[ \begin{array} { l l l } 1 & 5 & 2 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]

A)​ [1523015001]\left[ \begin{array} { c c c } 1 & 5 & - 23 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]
B)​ [1523015001]\left[ \begin{array} { c c c } - 1 & - 5 & 23 \\0 & - 1 & - 5 \\0 & 0 & - 1\end{array} \right]
C)​ [1523015001]\left[ \begin{array} { c c c } 1 & - 5 & - 23 \\0 & 1 & - 5 \\0 & 0 & 1\end{array} \right]
D)​ [1523015001]\left[ \begin{array} { l l l } 1 & 5 & 23 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]
E)​ [1523015001]\left[ \begin{array} { c c c } 1 & - 5 & 23 \\0 & 1 & - 5 \\0 & 0 & 1\end{array} \right]
سؤال
Find the inverse of A.​ A=[412482001248]A = \left[ \begin{array} { c c c } - 4 & 12 & 4 \\8 & 20 & 0 \\12 & 4 & - 8\end{array} \right]

A)​ A1=136[1075412131011]A ^ { - 1 } = \frac { 1 } { 36 } \left[ \begin{array} { c c c } 10 & 7 & 5 \\4 & - 1 & 2 \\- 13 & 10 & - 11\end{array} \right]
B)​ A1=124[1075412131011]A ^ { - 1 } = \frac { 1 } { 24 } \left[ \begin{array} { c c c } 10 & 7 & 5 \\4 & 1 & 2 \\13 & 10 & 11\end{array} \right]
C)​ A1=128[1075412131011]A ^ { - 1 } = \frac { 1 } { 28 } \left[ \begin{array} { c c c } - 10 & 7 & - 5 \\4 & - 1 & 2 \\- 13 & 10 & - 11\end{array} \right]
D)​ A1=136[1075412131011]A ^ { - 1 } = \frac { 1 } { 36 } \left[ \begin{array} { c c c } - 10 & 7 & - 5 \\4 & - 1 & 2 \\- 13 & 10 & - 11\end{array} \right]
E)​ A1=128[1075412131011]A ^ { - 1 } = \frac { 1 } { 28 } \left[ \begin{array} { c c c } 10 & 7 & 5 \\4 & 1 & 2 \\13 & 10 & 11\end{array} \right]
سؤال
Find the inverse of the matrix.​ [4114]\left[ \begin{array} { l l } 4 & 1 \\1 & 4\end{array} \right]

A)​​ [415115115415]\left[ \begin{array} { c c } \frac { 4 } { 15 } & \frac { 1 } { 15 } \\\\\frac { 1 } { 15 } & \frac { 4 } { 15 }\end{array} \right]
B)​ [415115115415]\left[ \begin{array} { l } - \frac { 4 } { 15 } - \frac { 1 } { 15 } \\- \frac { 1 } { 15 } - \frac { 4 } { 15 }\end{array} \right]
C)​ [415115115415\left[ \begin{array} { c c } \frac { 4 } { 15 } & - \frac { 1 } { 15 } \\- \frac { 1 } { 15 } & \frac { 4 } { 15 }\end{array} \right.
D)​ [415115115415]\left[ \begin{array} { c c } - \frac { 4 } { 15 } & \frac { 1 } { 15 } \\\frac { 1 } { 15 } & - \frac { 4 } { 15 }\end{array} \right]
E)​ [41500415]\left[ \begin{array} { c c } \frac { 4 } { 15 } & 0 \\0 & \frac { 4 } { 15 }\end{array} \right]
سؤال
​Solve the system of linear equations {4x18x24x38x4=012x120x28x312x4=158x120x28x320x4=104x1+16x2+16x3+44x4=0\left\{ \begin{array} { l l } 4 x _ { 1 } - 8 x _ { 2 } - 4 x _ { 3 } - 8 x _ { 4 } & = 0 \\12 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 12 x _ { 4 } & = - 15 \\8 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 20 x _ { 4 } & = 10 \\- 4 x _ { 1 } + 16 x _ { 2 } + 16 x _ { 3 } + 44 x _ { 4 } & = 0\end{array} \right. using the inverse matrix 14[24712103012973212311]\frac { 1 } { 4 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\- 10 & 3 & 0 & - 1 \\- 29 & 7 & 3 & - 2 \\12 & - 3 & - 1 & 1\end{array} \right] .

A)​ [x1x2x3x4]=[954454754354]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { - 95 } { 4 } \\\\\frac { - 45 } { 4 } \\\\\frac { - 75 } { 4 } \\\\\frac { 35 } { 4 }\end{array} \right]
B)​ [x1x2x3x4]=[054052]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } 0 \\\frac { - 5 } { 4 } \\0 \\\frac { - 5 } { 2 }\end{array} \right]
C)​ [x1x2x3x4]=[4549540354]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { - 45 } { 4 } \\\\\frac { - 95 } { 4 } \\\\0 \\\\\frac { 35 } { 4 }\end{array} \right]
D)​ [x1x2x3x4]=[15454052]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { r } \frac { - 15 } { 4 } \\\frac { 5 } { 4 } \\0 \\\frac { 5 } { 2 }\end{array} \right]
E)​ [x1x2x3x4]=[354254454454]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { - 35 } { 4 } \\\\\frac { - 25 } { 4 } \\\\\frac { 45 } { 4 } \\\\\frac { - 45 } { 4 }\end{array} \right]
سؤال
​Solve the system of linear equations {5x110x25x310x4=015x125x210x315x4=810x125x210x325x4=85x1+20x2+20x3+55x4=16\left\{ \begin{array} { l l } 5 x _ { 1 } - 10 x _ { 2 } - 5 x _ { 3 } - 10 x _ { 4 } & = 0 \\15 x _ { 1 } - 25 x _ { 2 } - 10 x _ { 3 } - 15 x _ { 4 } & = 8 \\10 x _ { 1 } - 25 x _ { 2 } - 10 x _ { 3 } - 25 x _ { 4 } & = - 8 \\- 5 x _ { 1 } + 20 x _ { 2 } + 20 x _ { 3 } + 55 x _ { 4 } & = 16\end{array} \right. using the inverse matrix 15[24712103012973212311]\frac { 1 } { 5 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\- 10 & 3 & 0 & - 1 \\- 29 & 7 & 3 & - 2 \\12 & - 3 & - 1 & 1\end{array} \right] .

A)​ [x1x2x3x4]=[1658585165]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 5 } \\\\\frac { 8 } { 5 } \\\\\frac { - 8 } { 5 } \\\\\frac { - 16 } { 5 }\end{array} \right]
B)​ [x1x2x3x4]=[0850165]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } 0 \\\\\frac { 8 } { 5 } \\\\0 \\\\\frac { 16 } { 5 }\end{array} \right]
C)​ [x1x2x3x4]=[1658500]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 5 } \\\\\frac { 8 } { 5 } \\\\0 \\\\0\end{array} \right]
D)​ [x1x2x3x4]=[245850165]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { 24 } { 5 } \\\\\frac { - 8 } { 5 } \\\\0 \\\\\frac { - 16 } { 5 }\end{array} \right]
E)​ [x1x2x3x4]=[24585165165]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { 24 } { 5 } \\\\\frac { - 8 } { 5 } \\\\\frac { - 16 } { 5 } \\\\\frac { 16 } { 5 }\end{array} \right]
سؤال
Find the inverse of the matrix [36915]\left[ \begin{array} { c c } 3 & 6 \\- 9 & - 15\end{array} \right] .

A)​ 17[36915]\frac { 1 } { 7 } \left[ \begin{array} { c c } 3 & 6 \\- 9 & - 15\end{array} \right]
B)​ 13[5231]\frac { 1 } { 3 } \left[ \begin{array} { c c } - 5 & - 2 \\3 & 1\end{array} \right]
C)​ [36159]\left[ \begin{array} { c c } - 3 & - 6 \\15 & 9\end{array} \right]
D)​ [391221]\left[ \begin{array} { c c } 3 & - 9 \\12 & - 21\end{array} \right]
E)​ 113[36915]\frac { 1 } { 13 } \left[ \begin{array} { l l } - 3 & - 6 \\- 9 & 15\end{array} \right]
سؤال
Find the inverse of the matrix [888244032244840]\left[ \begin{array} { c c c } 8 & 8 & 8 \\24 & 40 & 32 \\24 & 48 & 40\end{array} \right] .

A)​ 18[111321332]\frac { 1 } { 8 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right]
B)​ 18[111021332]\frac { 1 } { 8 } \left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & - 2 & - 1 \\3 & - 3 & 2\end{array} \right]
C)​ 8[111301332]8 \left[ \begin{array} { c c c } 1 & 1 & 1 \\- 3 & 0 & - 1 \\3 & - 3 & 2\end{array} \right]
D)​ 18[101321233]- \frac { 1 } { 8 } \left[ \begin{array} { c c c } 1 & 0 & - 1 \\- 3 & 2 & - 1 \\2 & - 3 & 3\end{array} \right]
E)​ 8[310311132]- 8 \left[ \begin{array} { c c c } 3 & 1 & 0 \\- 3 & 1 & - 1 \\1 & - 3 & 2\end{array} \right]
سؤال
​Use the matrix capabilities of a graphing utility to solve the following system of linear equations: {15x5y=310x+10y=620z=12\left\{ \begin{array} { c c c } 15 x - 5 y & = & 3 \\10 x + 10 y & = & 6 \\20 z & = & - 12\end{array} \right.

A)​ [xyz]=[31091035]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 3 } { 10 } \\\\\frac { 9 } { 10 } \\\\\frac { - 3 } { 5 }\end{array} \right]
B)​ [xyz]=[910035]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 9 } { 10 } \\0 \\\frac { - 3 } { 5 }\end{array} \right]
C)​ [xyz]=[31031035]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 3 } { 10 } \\\\\frac { 3 } { 10 } \\\\\frac { - 3 } { 5 }\end{array} \right]
D)​ [xyz]=[3103100]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 3 } { 10 } \\\\\frac { - 3 } { 10 } \\\\0\end{array} \right]
E)​ [xyz]=[31031035]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 3 } { 10 } \\\\\frac { 3 } { 10 } \\\\\frac { - 3 } { 5 }\end{array} \right]
سؤال
​Use the matrix capabilities of a graphing utility to solve the following system of linear equations:​ {14x+14y+21z=107x7y=57x+28z=20\left\{ \begin{array} { l l } - 14 x + 14 y + 21 z & = 10 \\7 x - 7 y & = - 5 \\7 x + 28 z & = 20\end{array} \right.

A)​ [xyz]=[2072570]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 20 } { 7 } \\\frac { 25 } { 7 } \\0\end{array} \right]
B)​ [xyz]=[1070157]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 10 } { 7 } \\0 \\\frac { - 15 } { 7 }\end{array} \right]
C)​ [xyz]=[15710757]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 15 } { 7 } \\\frac { 10 } { 7 } \\\frac { 5 } { 7 }\end{array} \right]
D)​ [xyz]=[57207107]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 7 } \\\\\frac { - 20 } { 7 } \\\\\frac { 10 } { 7 }\end{array} \right]
E)​ [xyz]=[157107107]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 15 } { 7 } \\\\\frac { - 10 } { 7 } \\\\ \frac { 10 } { 7 }\end{array} \right]
سؤال
Find the inverse of the matrix [2154]\left[ \begin{array} { c c } - 2 & 1 \\5 & 4\end{array} \right] (if it exists).

A)​ 113[4152]\frac { 1 } { 13 } \left[ \begin{array} { c c } 4 & - 1 \\- 5 & - 2\end{array} \right]
B)​ 113[4152]- \frac { 1 } { 13 } \left[ \begin{array} { c c } 4 & - 1 \\- 5 & - 2\end{array} \right]
C)​ 113[4152]- \frac { 1 } { 13 } \left[ \begin{array} { c c } - 4 & 1 \\5 & 2\end{array} \right]
D)​ 113[2154]- \frac { 1 } { 13 } \left[ \begin{array} { c c } - 2 & 1 \\5 & 4\end{array} \right]
E)does not exist
سؤال
Show that B is the inverse of A.Show all your work. Show that B is the inverse of A.Show all your work.   ​<div style=padding-top: 35px>
سؤال
​Solve the system of linear equations​ {9x+9y+9z=127x+45y+36z=327x+54y+45z=2\left\{ \begin{array} { l l } 9 x + 9 y + 9 z & = 1 \\27 x + 45 y + 36 z & = - 3 \\27 x + 54 y + 45 z & = 2\end{array} \right. ​using the inverse matrix 19[111321332]\frac { 1 } { 9 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right] .

A)​ [xyz]=[592349]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 9 } \\\\\frac { - 2 } { 3 } \\\\\frac { 4 } { 9 }\end{array} \right]
B)​ [xyz]=[49119169]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 4 } { 9 } \\\\\frac { - 11 } { 9 } \\\\\frac { 16 } { 9 }\end{array} \right]
C)​ [xyz]=[119frac16949]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 11 } { 9 } \\\\\\frac { 16 } { 9 } \\\\\frac { - 4 } { 9 }\end{array} \right]
D)​ [xyz]=[591329]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 9 } \\\\\frac { 1 } { 3 } \\\\\frac { - 2 } { 9 }\end{array} \right]
E)​ [xyz]=[16949119]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 9 } \\\\\frac { - 4 } { 9 } \\\\\frac { - 11 } { 9 }\end{array} \right]
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/59
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 49: The Inverse of a Square Matrix
1
Find the inverse of the matrix (if it exists). ​​ [1237]\left[ \begin{array} { l l } 1 & 2 \\3 & 7\end{array} \right]

A)​ [7231]\left[ \begin{array} { l l } 7 & 2 \\3 & 1\end{array} \right]
B)​ [7231]\left[ \begin{array} { c c } 7 & - 2 \\- 3 & 1\end{array} \right]
C)​ [7231]\left[ \begin{array} { l l } - 7 & - 2 \\- 3 & - 1\end{array} \right]
D)​ [7231]\left[ \begin{array} { c c } - 7 & - 2 \\3 & 1\end{array} \right]
E)​ [7231]\left[ \begin{array} { c c } - 7 & 2 \\3 & - 1\end{array} \right]
[7231]\left[ \begin{array} { c c } 7 & - 2 \\- 3 & 1\end{array} \right]
2
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). ​​ [2315]\left[ \begin{array} { l l } 2 & 3 \\1 & 5\end{array} \right]

A)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { l l } 5 & 3 \\1 & 2\end{array} \right]
B)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { c c } - 5 & - 3 \\1 & 2\end{array} \right]
C)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { c c } - 5 & 3 \\1 & - 2\end{array} \right]
D)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { c c } 5 & - 3 \\- 1 & 2\end{array} \right]
E)​ 17[5312]\frac { 1 } { 7 } \left[ \begin{array} { l l } - 5 & - 3 \\- 1 & - 2\end{array} \right]
17[5312]\frac { 1 } { 7 } \left[ \begin{array} { c c } 5 & - 3 \\- 1 & 2\end{array} \right]
3
Solve the system of linear equations. ​​ {x2y=02x3y=8\left\{ \begin{array} { l } x - 2 y = 0 \\2 x - 3 y = 8\end{array} \right.

A)​ (16,8)( 16,8 )
B)​ (16,8)( 16 , - 8 )
C)​ (8,16)( - 8,16 )
D)​ (8,16)( 8,16 )
E)​ (16,8)( - 16,8 )
(16,8)( 16,8 )
4
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists).​ [67513]\left[ \begin{array} { c c } 6 & 7 \\- 5 & 13\end{array} \right]

A)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } 13 & - 7 \\5 & 6\end{array} \right]
B)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } - 13 & 7 \\5 & - 6\end{array} \right]
C)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } - 13 & - 7 \\5 & 6\end{array} \right]
D)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } 13 & 7 \\5 & 6\end{array} \right]
E)​ 1113[13756]\frac { 1 } { 113 } \left[ \begin{array} { c c } - 13 & - 7 \\- 5 & - 6\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
5
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the matrix (if it exists). ​​ [7979]\left[ \begin{array} { c c } - 7 & - 9 \\7 & 9\end{array} \right]

A)​ [9977]\left[ \begin{array} { c c } - 9 & - 9 \\7 & 7\end{array} \right]
B)​ [9977]\left[ \begin{array} { r r } - 9 & - 9 \\- 7 & - 7\end{array} \right]
C)​ [9977]\left[ \begin{array} { c c } - 9 & 9 \\7 & - 7\end{array} \right]
D) [9977]\left[ \begin{array} { c c } 9 & - 9 \\7 & 7\end{array} \right]
E)​Does not exist
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
6
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). ​​ [1232]\left[ \begin{array} { c c } 1 & - 2 \\- 3 & 2\end{array} \right]

A)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { c c } - 2 & - 2 \\3 & 1\end{array} \right]
B)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { l l } - 2 & - 2 \\- 3 & - 1\end{array} \right]
C)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { l l } 2 & 2 \\3 & 1\end{array} \right]
D)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { c c } - 2 & 2 \\3 & - 1\end{array} \right]
E)​ 14[2231]- \frac { 1 } { 4 } \left[ \begin{array} { c c } 2 & - 2 \\3 & 1\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the inverse of the matrix (if it exists).​ [3004]\left[ \begin{array} { l l } 3 & 0 \\0 & 4\end{array} \right]

A)​ [140014]\left[ \begin{array} { l l } \frac { 1 } { 4 } & 0 \\0 & \frac { 1 } { 4 }\end{array} \right]
B)​ [14000]\left[ \begin{array} { l l } \frac { 1 } { 4 } & 0 \\0 & 0\end{array} \right]
C)​ [014140]\left[ \begin{array} { c c } 0 & \frac { 1 } { 4 } \\\frac { 1 } { 4 } & 0\end{array} \right]
D)​ [140013]\left[ \begin{array} { l l } \frac { 1 } { 4 } & 0 \\0 & \frac { 1 } { 3 }\end{array} \right]
E)​ [130014]\left[ \begin{array} { l l } \frac { 1 } { 3 } & 0 \\0 & \frac { 1 } { 4 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find the inverse of the matrix (if it exists).​ [6778]\left[ \begin{array} { l l } 6 & - 7 \\7 & - 8\end{array} \right]

A)​ [8776]\left[ \begin{array} { c c } - 8 & 7 \\7 & 6\end{array} \right]
B)​ [8776]\left[ \begin{array} { c c } - 8 & 7 \\- 7 & 6\end{array} \right]
C)​ [8776]\left[ \begin{array} { c c } - 8 & - 7 \\- 7 & 6\end{array} \right]
D)​ [8776]\left[ \begin{array} { c c } - 8 & 7 \\7 & - 6\end{array} \right]
E)​ [8776]\left[ \begin{array} { c c } - 8 & - 7 \\7 & 6\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
9
Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). ​​ [12352]\left[ \begin{array} { c c } - 12 & 3 \\5 & 2\end{array} \right]

A)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { c c } 2 & - 3 \\- 5 & - 12\end{array} \right]
B)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { c c } - 2 & - 3 \\5 & 12\end{array} \right]
C)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { c c } - 2 & 3 \\5 & - 12\end{array} \right]
D)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { c c } 2 & - 3 \\5 & 12\end{array} \right]
E)​ 139[23512]- \frac { 1 } { 39 } \left[ \begin{array} { l l } - 2 & - 3 \\- 5 & - 12\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the inverse of the matrix (if it exists).​ [4131]\left[ \begin{array} { c c } 4 & - 1 \\- 3 & 1\end{array} \right]

A)​ [1134]\left[ \begin{array} { l l } 1 & 1 \\3 & 4\end{array} \right]
B)​ [1134]\left[ \begin{array} { c c } 1 & 1 \\- 3 & 4\end{array} \right]
C)​ [1134]\left[ \begin{array} { c c } - 1 & 1 \\3 & 4\end{array} \right]
D)​ [1134]\left[ \begin{array} { c c } 1 & 1 \\3 & - 4\end{array} \right]
E)Does not exist
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
11
Use an inverse matrix to solve (if possible)the system of linear equations.​ {3x+4y=25x+3y=4\left\{ \begin{array} { l } 3 x + 4 y = - 2 \\5 x + 3 y = 4\end{array} \right.

A)​ (2,2)( - 2,2 )
B)​ (2,2)( 2,2 )
C)​ (2,2)( - 2 , - 2 )
D)​ (2,2)( 2 , - 2 )
E)​ (1,2)( - 1,2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the inverse of the matrix (if it exists).​ [40060051111]\left[ \begin{array} { c c c } 4 & 0 & 0 \\6 & 0 & 0 \\5 & 11 & 11\end{array} \right]

A)​ [4006005411]\left[ \begin{array} { c c c } - 4 & 0 & 0 \\- 6 & 0 & 0 \\5 & 4 & 11\end{array} \right]
B)​ [4006005411]\left[ \begin{array} { c c c } - 4 & 0 & 0 \\- 6 & 0 & 0 \\- 5 & - 4 & - 11\end{array} \right]
C)​ [4006005411]\left[ \begin{array} { c c c } 4 & 0 & 0 \\6 & 0 & 0 \\5 & 4 & 11\end{array} \right]
D)​ [4006005411]\left[ \begin{array} { c c c } - 4 & 0 & 0 \\- 6 & 0 & 0 \\- 5 & 4 & 11\end{array} \right]
E)Does not exist
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
13
Solve the system of linear equations.​ {x+y+z=73x+5y+4z=83x+6y+5z=0\left\{ \begin{array} { c } x + y + z = - 7 \\3 x + 5 y + 4 z = 8 \\3 x + 6 y + 5 z = 0\end{array} \right.

A)​ (2,37,45)( 2,37 , - 45 )
B)​ (1,37,45)( - 1,37 , - 45 )
C)​ (1,37,45)( - 1 , - 37 , - 45 )
D)​ (1,37,45)( 1,37 , - 45 )
E)​ (1,38,45)( 1,38 , - 45 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
14
Solve the system of linear equations.​ {x2y=62x3y=4\left\{ \begin{array} { c } x - 2 y = 6 \\2 x - 3 y = 4\end{array} \right. ​ ​

A)​ (10,8)( - 10 , - 8 )
B)​ (10,8)( - 10,8 )
C)​ (10,4)( - 10,4 )
D)​ (4,10)( - 4 , - 10 )
E)​ (10,8)( 10,8 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the inverse of the matrix (if it exists).​ [733419]\left[ \begin{array} { c c } - 7 & 33 \\4 & - 19\end{array} \right]

A)​ [193347]\left[ \begin{array} { c c } - 19 & - 33 \\4 & - 7\end{array} \right]
B)​ [193347]\left[ \begin{array} { c c } - 19 & - 33 \\- 4 & - 7\end{array} \right]
C)​ [193347]\left[ \begin{array} { c c } 19 & - 33 \\- 4 & - 7\end{array} \right]
D)​ [193347]\left[ \begin{array} { c c } 19 & - 33 \\4 & - 7\end{array} \right]
E)​ [193347]\left[ \begin{array} { c c } 19 & - 33 \\4 & 7\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
16
Solve the system of linear equations.​ {x2y=52x3y=10\left\{ \begin{array} { l l } x - 2 y & = 5 \\2 x - 3 y & = 10\end{array} \right.

A)​ (5,10)( 5,10 )
B)​ (5,5)( 5,5 )
C)​ (10,5)( 10,5 )
D)​ (5,0)( 5,0 )
E)​ (0,5)( 0,5 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
17
Solve the system of linear equations.​ {x2y=32x3y=4\left\{ \begin{array} { l } x - 2 y = 3 \\2 x - 3 y = - 4\end{array} \right.

A)​ (17,4)( - 17,4 )
B)​ (17,10)( - 17,10 )
C)​ (4,17)( - 4 , - 17 )
D)​ (17,10)( 17,10 )
E)​ (17,10)( - 17 , - 10 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the inverse of the matrix (if it exists).​ [500200157]\left[ \begin{array} { c c c } - 5 & 0 & 0 \\2 & 0 & 0 \\1 & 5 & 7\end{array} \right]

A)​ [500200157]\left[ \begin{array} { l l l } 5 & 0 & 0 \\2 & 0 & 0 \\1 & 5 & 7\end{array} \right]
B)​ [500200157]\left[ \begin{array} { c c c } - 5 & 0 & 0 \\- 2 & 0 & 0 \\1 & 5 & 7\end{array} \right]
C) [500200157]\left[ \begin{array} { c c c } - 5 & 0 & 0 \\- 2 & 0 & 0 \\- 1 & - 5 & - 7\end{array} \right]
D)​ [500200157]\left[ \begin{array} { l l l } - 5 & 0 & 0 \\- 2 & 0 & 0 \\- 1 & 5 & 7\end{array} \right]
E)​Does not exist
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
19
Solve the system of linear equations.​ {x+y+z=03x+5y+4z=93x+6y+5z=6\left\{ \begin{array} { l } x + y + z = 0 \\3 x + 5 y + 4 z = 9 \\3 x + 6 y + 5 z = 6\end{array} \right.

A)​ (3,12,15)( 3,12 , - 15 )
B)​ (3,12,15)( 3,12,15 )
C)​ (3,12,15)( - 3 , - 12 , - 15 )
D)​ (3,12,15)( 3 , - 12 , - 15 )
E)​ (3,12,15)( - 3,12 , - 15 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
20
​Use an inverse matrix to solve (if possible)the system of linear equations.​ {18x+12y=1430x+24y=24\left\{ \begin{array} { l } 18 x + 12 y = 14 \\30 x + 24 y = 24\end{array} \right.

A)​( 56\frac { 5 } { 6 } , 16\frac { 1 } { 6 } )
B)​( 4, 16\frac { 1 } { 6 } )
C)​( 23\frac { 2 } { 3 } , 16\frac { 1 } { 6 } )
D)​( 23\frac { 2 } { 3 } , 14\frac { 1 } { 4 } )
E)​( 23\frac { 2 } { 3 } ,3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
21
The table shows the enrollment projections (in millions)for public universities in the United States for the years 2010 through 2012.
Year
Enrollment projections
2010
13)83
2011
14)07
2012
14)23
The data can be modeled by the quadratic function y=at2+bt+cy=a t^{2}+b t+c .Create a system of linear equations for the data.Let t represent the year,with t = 10 corresponding to 2010.

A) {100a+10b+c=13.83121a11b+c=14.07144a+12b+c=14.23\left\{ \begin{array} { l } 100 a + 10 b + c = 13.83 \\121 a - 11 b + c = 14.07 \\144 a + 12 b + c = 14.23\end{array} \right.
B)​ {100a10b+c=13.83121a+11b+c=14.07144a+12b+c=14.23\left\{ \begin{array} { l } 100 a - 10 b + c = 13.83 \\121 a + 11 b + c = 14.07 \\144 a + 12 b + c = 14.23\end{array} \right.
C)​ {100a+10b+c=13.83121a+11b+c=14.07144a+12b+c=14.23\left\{ \begin{array} { l } 100 a + 10 b + c = 13.83 \\121 a + 11 b + c = 14.07 \\144 a + 12 b + c = 14.23\end{array} \right.
D)​ {100a+10b+c=13.83121a+11b+c=14.07144a+12bc=14.23\left\{ \begin{array} { l } 100 a + 10 b + c = 13.83 \\121 a + 11 b + c = 14.07 \\144 a + 12 b - c = 14.23\end{array} \right.
E)​ {100a10bc=13.83121a11bc=14.07144a12bc=14.23\left\{ \begin{array} { l } 100 a - 10 b - c = 13.83 \\121 a - 11 b - c = 14.07 \\144 a - 12 b - c = 14.23\end{array} \right.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
22
Consider a person who invests in AAA-rated bonds,A-rated bonds,and B-rated bonds.The average yields are 6.5% on AAA bonds,7% on A bonds,and 9% on B bonds.The person invests twice as much in B bonds as in A bonds.Let x,y and z represent the amounts invested in AAA,A,and B bonds,respectively. Total Investment
Annual Return
$12,000
890 {x+y+z=12,000 (total investment) 0.065x+0.07y+0.09z=890 (annual retum) 2yz=0\left\{ \begin{array} { c l } x + y + z & = 12,000 \text { (total investment) } \\0.065 x + 0.07 y + 0.09 z & = 890 \text { (annual retum) } \\2 y - z & = 0\end{array} \right. Use the inverse of the coefficient matrix of this system to find the amount invested in each type of bond.

A)$7,000 in AAA-rated bonds $2,000 in A-rated bonds
$4,000 in B-rated bonds
B)$5,000 in AAA-rated bonds $7,000 in A-rated bonds
$3,000 in B-rated bonds
C)$5,000 in AAA-rated bonds $6,000 in A-rated bonds
$4,000 in B-rated bonds
D)$3,000 in AAA-rated bonds $2,000 in A-rated bonds
$6,000 in B-rated bonds
E)$6,000 in AAA-rated bonds $2,000 in A-rated bonds
$4,000 in B-rated bonds
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
23
Find the inverse of the matrix [24610]\left[ \begin{array} { c c } 2 & 4 \\- 6 & - 10\end{array} \right] .

A)​ 113[24610]\frac { 1 } { 13 } \left[ \begin{array} { l l } - 2 & - 4 \\- 6 & 10\end{array} \right]
B)​ [24106]\left[ \begin{array} { c c } - 2 & - 4 \\10 & 6\end{array} \right]
C)​ [26814]\left[ \begin{array} { c c } 2 & - 6 \\8 & - 14\end{array} \right]
D)​ 17[24610]\frac { 1 } { 7 } \left[ \begin{array} { c c } 2 & 4 \\- 6 & - 10\end{array} \right]
E)​ 12[5231]\frac { 1 } { 2 } \left[ \begin{array} { c c } - 5 & - 2 \\3 & 1\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
24
Find the inverse of the matrix [1432]\left[ \begin{array} { c c } - 1 & 4 \\3 & - 2\end{array} \right] (if it exists).

A)​ 110[2431]- \frac { 1 } { - 10 } \left[ \begin{array} { l l } - 2 & - 4 \\- 3 & - 1\end{array} \right]
B) 110[1432]- \frac { 1 } { - 10 } \left[ \begin{array} { c c } - 1 & 4 \\3 & - 2\end{array} \right]
C)​ 110[2431]\frac { 1 } { - 10 } \left[ \begin{array} { l l } - 2 & - 4 \\- 3 & - 1\end{array} \right]
D)​ 110[2431]\frac { 1 } { - 10 } \left[ \begin{array} { l l } 2 & 4 \\3 & 1\end{array} \right]
E)​does not exist
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
25
A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​
875 units of beef
830 units of chicken
850 units of liver

A)765 muffins,5 bones,50 cookies
B)50 muffins,765 bones,50 cookies
C)5 muffins,765 bones,50 cookies
D)50 muffins,765 bones,5 cookies
E)5 muffins,5 bones,830 cookies
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
26
A florist is creating 10 centerpieces for the tables at a wedding reception.Roses cost $2.50 each,lilies cost $8 each,and irises cost $4 each.The customer has a budget of $300 allocated for the centerpieces and wants each centerpiece to contain 12 flowers,with twice as many roses as the number of irises and lilies combined. ​
Write a system of linear equations that represents the situation.

A) {2.5r8l4i=300r2l2i=0rli=120\left\{ \begin{array} { l l } 2.5 r - 8 l - 4 i & = 300 \\- r - 2 l - 2 i & = 0 \\r - l - i & = 120\end{array} \right.
B)​ {2.5r+8l+4i=300r+2l+2i=0r+l+i=120\left\{ \begin{array} { l l } 2.5 r + 8 l + 4 i & = 300 \\r + 2 l + 2 i & = 0 \\r + l + i & = 120\end{array} \right.
C)​ {2.5r+8l+4i=300r+2l+2i=0r+l+i=120\left\{ \begin{array} { l l } 2.5 r + 8 l + 4 i & = 300 \\- r + 2 l + 2 i & = 0 \\r + l + i & = 120\end{array} \right.
D)​ {2.5r8l+4i=300r+2l+2i=0r+l+i=120\left\{ \begin{array} { l l } 2.5 r - 8 l + 4 i & = 300 \\- r + 2 l + 2 i & = 0 \\r + l + i & = 120\end{array} \right.
E)​ {2.5r+8l4i=300r+2l+2i=0r+l+i=120\left\{ \begin{array} { l l } 2.5 r + 8 l - 4 i & = 300 \\- r + 2 l + 2 i & = 0 \\r + l + i & = 120\end{array} \right.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
27
​Solve the system of linear equations {2x+3y=154x3y=10\left\{ \begin{array} { l } 2 x + 3 y = - 15 \\4 x - 3 y = 10\end{array} \right. using the inverse matrix [16162919]\left[ \begin{array} { c c } \frac { 1 } { 6 } & \frac { 1 } { 6 } \\\\\frac { 2 } { 9 } & - \frac { 1 } { 9 }\end{array} \right]

A)​ [xy]=[5652]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 5 } { 6 } \\\\\frac { 5 } { 2 }\end{array} \right]
B)​ [xy]=[56409]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } - \frac { 5 } { 6 } \\\\- \frac { 40 } { 9 }\end{array} \right]
C)​ [xy]=[251852]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 25 } { 18 } \\\\\frac { 5 } { 2 }\end{array} \right]
D)​ [xy]=[520]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 5 } { 2 } \\0\end{array} \right]
E)​ [xy]=[5356]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } - \frac { 5 } { 3 } \\\\\frac { 5 } { 6 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
28
Use an inverse matrix to solve (if possible)the system of linear equations.​ {0.2x0.6y=14.4x+1.4y=20.8\left\{ \begin{array} { l } 0.2 x - 0.6 y = 14.4 \\- x + 1.4 y = - 20.8\end{array} \right.

A)(-24,-31)
B)(-23,-32)
C)(-22,-32)
D)(-24,-32)
E)(-23,-30)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
29
​Use an inverse matrix to solve (if possible)the system of linear equations.​ {1.8x5y=428.8x16y=5\left\{ \begin{array} { l l } 1.8 x - 5 y & = 4 \\28.8 x - 16 y & = 5\end{array} \right.

A)​( 116\frac { 1 } { 16 } ,16)
B)​(0,0)
C)​( 116\frac { 1 } { 16 } , 516\frac { 5 } { 16 } )
D)​(16,16)
E)​No solution
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
30
A coffee manufacturer sells a 14-pound package that contains three flavors of coffee for $25.French vanilla coffee costs $5 per pound,hazelnut flavored coffee costs $5.50 per pound,and Swiss chocolate flavored coffee costs $6 per pound.The package contains the same amount of hazelnut as Swiss chocolate.Let f represent the number of pounds of French vanilla,h represent the number of pounds of hazelnut,and s represent the number of pounds of Swiss chocolate. ​
Write a system of linear equations that represents the situation.

A) {5f5.5h+6s=25f+h+s=14hs=0\left\{ \begin{array} { c l } 5 f - 5.5 h + 6 s & = 25 \\f + h + s & = 14 \\h - s & = 0\end{array} \right.
B)​ {5f+5.5h+6s=25f+h+s=14hs=0\left\{ \begin{aligned}5 f + 5.5 h + 6 s & = 25 \\f + h + s & = 14 \\h - s & = 0\end{aligned} \right.
C)​ {5f5.5h+6s=25fh+s=14hs=0\left\{ \begin{array} { c l } 5 f - 5.5 h + 6 s & = 25 \\f - h + s & = 14 \\h - s & = 0\end{array} \right.
D)​ {5f5.5h+6s=25f+h+s=14h+s=0\left\{ \begin{array} { c l } 5 f - 5.5 h + 6 s & = 25 \\f + h + s & = 14 \\h + s & = 0\end{array} \right.
E)​ {5f5.5h6s=25fhs=14h+s=0\left\{ \begin{array} { c l } 5 f - 5.5 h - 6 s & = 25 \\f - h - s & = 14 \\h + s & = 0\end{array} \right.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the inverse of the matrix [1622811]\left[ \begin{array} { c c } - 16 & 22 \\- 8 & 11\end{array} \right] (if it exists).

A)does not exist
B)​ 116- \frac { 1 } { 16 } [1122816]\left[ \begin{array} { c c } 11 & - 22 \\8 & - 16\end{array} \right]
C)​ 111\frac { 1 } { 11 } [1622811]\left[ \begin{array} { c c } - 16 & 22 \\- 8 & 11\end{array} \right]
D)​ 122- \frac { 1 } { 22 } [1122816]\left[ \begin{array} { c c } - 11 & 22 \\- 8 & 16\end{array} \right]
E)​ 18\frac { 1 } { 8 } [1122816]\left[ \begin{array} { c c } 11 & - 22 \\8 & - 16\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
32
Consider a person who invests in AAA-rated bonds,A-rated bonds,and B-rated bonds.The average yields are 6.5% on AAA bonds,7% on A bonds,and 9% on B bonds.The person invests twice as much in B bonds as in A bonds.Let x,y and z represent the amounts invested in AAA,A,and B bonds,respectively. Total Investment
Annual Return
$32,000
2465 {x+y+z=32,000 (total investment) 0.065x+0.07y+0.09z=2465 (annual retur) 2yz=0\left\{ \begin{array} { c l } x + y + z & = 32,000 \text { (total investment) } \\0.065 x + 0.07 y + 0.09 z & = 2465 \text { (annual retur) } \\2 y - z & = 0\end{array} \right. Use the inverse of the coefficient matrix of this system to find the amount invested in each type of bond.

A)$11,000 in AAA-rated bonds $7,000 in A-rated bonds
$14,000 in B-rated bonds
B)$11,000 in AAA-rated bonds $14,000 in A-rated bonds
$7,000 in B-rated bonds
C)$14,000 in AAA-rated bonds $11,000 in A-rated bonds
$7,000 in B-rated bonds
D)$14,000 in AAA-rated bonds $7,000 in A-rated bonds
$11,000 in B-rated bonds
E)$7,000 in AAA-rated bonds $11,000 in A-rated bonds
$14,000 in B-rated bonds
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
33
A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​
900 units of beef
700 units of chicken
800 units of liver

A)200 muffins,500 bones,200 cookies
B)200 muffins,500 bones,0 cookies
C)0 muffins,0 bones,700 cookies
D)500 muffins,0 bones,200 cookies
E)0 muffins,500 bones,200 cookies
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
34
​Solve the system of linear equations {3x+6y=16x+8y=2\left\{ \begin{array} { l } 3 x + 6 y = 1 \\6 x + 8 y = 2\end{array} \right. using the inverse matrix [23121214]\left[ \begin{array} { c c } - \frac { 2 } { 3 } & \frac { 1 } { 2 } \\\frac { 1 } { 2 } & - \frac { 1 } { 4 }\end{array} \right]

A)​ [xy]=[11120]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 11 } { 12 } \\0\end{array} \right]
B)​ [xy]=[130]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 1 } { 3 } \\0\end{array} \right]
C)​ [xy]=[111213]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 11 } { 12 } \\\\\frac { 1 } { 3 }\end{array} \right]
D)​ [xy]=[1312]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 1 } { 3 } \\- \frac { 1 } { 2 }\end{array} \right]
E)​ [xy]=[1213]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } - \frac { 1 } { 2 } \\\frac { 1 } { 3 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
35
Consider a person who invests in AAA-rated bonds,A-rated bonds,and B-rated bonds.The average yields are 6.5% on AAA bonds,7% on A bonds,and 9% on B bonds.The person invests twice as much in B bonds as in A bonds.Let x,y and z represent the amounts invested in AAA,A,and B bonds,respectively.  Total Investment  Annual Return $12,000890\begin{array} { | c | c | } \hline \text { Total Investment } & \text { Annual Return } \\\hline \$ 12,000 & 890 \\\hline\end{array} {x+y+z=663,000 (total investment) 0.065x+0.07y+0.09z=47,000 (annual retum) 2yz=0\left\{ \begin{array} { c l } x + y + z & = 663,000 \text { (total investment) } \\0.065 x + 0.07 y + 0.09 z & = 47,000 \text { (annual retum) } \\2 y - z & = 0\end{array} \right. Use the inverse of the coefficient matrix of this system to find the amount invested in each type of bond.

A)$142,000 in AAA-rated bonds $451,000 in A-rated bonds
$71,000 in B-rated bonds
B)$450,000 in AAA-rated bonds $71,000 in A-rated bonds
$142,000 in B-rated bonds
C)$143,000 in AAA-rated bonds $71,000 in A-rated bonds
$450,000 in B-rated bonds
D)$72,000 in AAA-rated bonds $450,000 in A-rated bonds
$142,000 in B-rated bonds
E)$450,000 in AAA-rated bonds $142,000 in A-rated bonds
$70,000 in B-rated bonds
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
36
Use the matrix capabilities of a graphing utility to find the inverse of the matrix 19[453483120]\frac { 1 } { 9 } \left[ \begin{array} { c c c } - 4 & - 5 & 3 \\- 4 & - 8 & 3 \\1 & 2 & 0\end{array} \right] (if it exists).

A)​ [9126030039]\left[ \begin{array} { c c c } - 9 & 12 & 6 \\0 & - 3 & 0 \\0 & 3 & - 9\end{array} \right]
B)​ [6693300312]\left[ \begin{array} { c c c } - 6 & 6 & 9 \\3 & - 3 & 0 \\0 & 3 & 12\end{array} \right]
C)​ [609030036]\left[ \begin{array} { c c c } - 6 & 0 & 9 \\0 & - 3 & 0 \\0 & 3 & - 6\end{array} \right]
D) [3390300612]\left[ \begin{array} { c c c } 3 & 3 & 9 \\0 & - 3 & 0 \\0 & 6 & 12\end{array} \right]
E)​does not exist ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
37
A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​
3,000 units of beef
2,950 units of chicken
2,900 units of liver

A)200 muffins,2,300 bones,200 cookies
B)150 muffins,150 bones,2,950 cookies
C)200 muffins,2,300 bones,150 cookies
D)2,300 muffins,150 bones,200 cookies
E)150 muffins,2,300 bones,200 cookies
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the inverse of the matrix [777213528214235]\left[ \begin{array} { c c c } 7 & 7 & 7 \\21 & 35 & 28 \\21 & 42 & 35\end{array} \right] . ​

A)​ 17[111321332]\frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right]
B)​ 17[111021332]\frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & - 2 & - 1 \\3 & - 3 & 2\end{array} \right]
C)​ 7[310311132]- 7 \left[ \begin{array} { c c c } 3 & 1 & 0 \\- 3 & 1 & - 1 \\1 & - 3 & 2\end{array} \right]
D)​ 17[101321233]- \frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 0 & - 1 \\- 3 & 2 & - 1 \\2 & - 3 & 3\end{array} \right]
E)​ 7[111301332]7 \left[ \begin{array} { c c c } 1 & 1 & 1 \\- 3 & 0 & - 1 \\3 & - 3 & 2\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the inverse of the following matrix.​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } \cos \theta & \sin \theta \\- \sin \theta & \cos \theta\end{array} \right]

A)​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } \cos \theta & - \sin \theta \\\sin \theta & \cos \theta\end{array} \right]
B)​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } - \cos \theta & - \sin \theta \\\sin \theta & \cos \theta\end{array} \right]
C)​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } \cos \theta & \sin \theta \\- \sin \theta & \cos \theta\end{array} \right]
D)​ [cosθsinθsinθcosθ]\left[ \begin{array} { c c } \cos \theta & \sin \theta \\- \sin \theta & - \cos \theta\end{array} \right]
E)​ [cosθsinθsinθcosθ]\left[ \begin{array} { l l } \cos \theta & - \sin \theta \\\sin \theta & - \cos \theta\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
40
A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​
800 units of beef
750 units of chicken
725 units of liver

A)150 muffins,300 bones,150 cookies
B)150 muffins,300 bones,100 cookies
C)300 muffins,100 bones,150 cookies
D)100 muffins,300 bones,150 cookies
E)100 muffins,100 bones,750 cookies
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
41
​Solve the system of linear equations {6x+18y+6z=112x+30y=218x+6y12z=1\left\{ \begin{array} { l l } - 6 x + 18 y + 6 z & = 1 \\12 x + 30 y & = 2 \\18 x + 6 y - 12 z & = - 1\end{array} \right. using an inverse matrix. ​

A)​ [xyz]=[161213]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 1 } { 6 } \\\\\frac { - 1 } { 2 } \\\\\frac { 1 } { 3 }\end{array} \right]
B)​ [xyz]=[161213]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 1 } { 6 } \\\\\frac { - 1 } { 2 } \\\\\frac { - 1 } { 3 }\end{array} \right]
C)​ [xyz]=[16012]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 1 } { 6 } \\0 \\\frac { 1 } { 2 }\end{array} \right]
D)​ [xyz]=[01316]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } 0 \\\frac { 1 } { 3 } \\\frac { - 1 } { 6 }\end{array} \right]
E)​ [xyz]=[16013]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } \frac { 1 } { 6 } \\0 \\\frac { 1 } { 3 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
42
​Solve the system of linear equations​ {7x+7y+7z=021x+35y+28z=621x+42y+35z=1\left\{ \begin{array} { l l } 7 x + 7 y + 7 z & = 0 \\21 x + 35 y + 28 z & = 6 \\21 x + 42 y + 35 z & = 1\end{array} \right. ​using the inverse matrix 17[111321332]\frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right] .

A)​ [xyz]=[57117127]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 5 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 12 } { 7 }\end{array} \right]
B)​ [xyz]=[57117167]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 16 } { 7 }\end{array} \right]
C)​ [xyz]=[16757117]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 7 } \\\\\frac { 5 } { 7 } \\\\\frac { 11 } { 7 }\end{array} \right]
D)​ [xyz]=[12711757]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 12 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 5 } { 7 }\end{array} \right]
E)​ [xyz]=[57167117]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 5 } { 7 } \\\\\frac { - 16 } { 7 } \\\\\frac { 11 } { 7 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find the inverse of A.​ A=[2341]A = \left[ \begin{array} { c c } 2 & 3 \\- 4 & 1\end{array} \right]

A)​ A1=[17372717]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 7 } & - \frac { 3 } { 7 } \\\\\frac { 2 } { 7 } & \frac { 1 } { 7 }\end{array} \right]
B)​ A1=[1143142717]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 14 } & - \frac { 3 } { 14 } \\\\\frac { 2 } { 7 } & \frac { 1 } { 7 }\end{array} \right]
C)​ A1=[1143727114]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 14 } & - \frac { 3 } { 7 } \\\\\frac { 2 } { 7 } & \frac { 1 } { 14 }\end{array} \right]
D)​ A1=[1143142717]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 14 } & \frac { 3 } { 14 } \\\frac { 2 } { 7 } & \frac { 1 } { 7 }\end{array} \right]
E)​ A1=[1737214114]A ^ { - 1 } = \left[ \begin{array} { c c } \frac { 1 } { 7 } & - \frac { 3 } { 7 } \\\frac { 2 } { 14 } & \frac { 1 } { 14 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
44
Find the inverse of the matrix.​ [105115511]\left[ \begin{array} { c c c } 1 & 0 & 5 \\1 & 1 & 5 \\- 5 & 1 & 1\end{array} \right]

A)​​ [2955110611]\left[ \begin{array} { c c c } - 29 & 5 & - 5 \\- 1 & 1 & 0 \\6 & 1 & 1\end{array} \right]
B) [4526526110626126126]\left[ \begin{array} { c c c } 4 & \frac { 5 } { 26 } & - \frac { 5 } { 26 } \\1 & 1 & 0 \\\frac { 6 } { 26 } & - \frac { 1 } { 26 } & \frac { 1 } { 26 }\end{array} \right]
C)​ [426526526110626126126]\left[ \begin{array} { c c c } - \frac { 4 } { 26 } & \frac { 5 } { 26 } & - \frac { 5 } { 26 } \\- 1 & 1 & 0 \\\frac { 6 } { 26 } & - \frac { 1 } { 26 } & \frac { 1 } { 26 }\end{array} \right]
D)​ [2955111611]\left[ \begin{array} { c c c } 29 & 5 & - 5 \\- 1 & 1 & - 1 \\6 & - 1 & 1\end{array} \right]
E)​ [2955111611]\left[ \begin{array} { c c c } 29 & 5 & - 5 \\- 1 & 1 & 1 \\6 & - 1 & 1\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find the inverse of the matrix [81447]\left[ \begin{array} { c c } - 8 & 14 \\- 4 & 7\end{array} \right] (if it exists).

A)​ 14[71448]\frac { 1 } { 4 } \left[ \begin{array} { l l } 7 & - 14 \\4 & - 8\end{array} \right]
B)​ 18[71448]- \frac { 1 } { 8 } \left[ \begin{array} { c c } 7 & - 14 \\4 & - 8\end{array} \right]
C)​ 14[71448]- \frac { 1 } { 4 } \left[ \begin{array} { c c } - 7 & - 14 \\4 & 8\end{array} \right]
D)​ 17[81447]\frac { 1 } { 7 } \left[ \begin{array} { c c } - 8 & 14 \\- 4 & 7\end{array} \right]
E)does not exist
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
46
Use a graphing calculator to find the inverse of the matrix.​ [1483014800140001]\left[ \begin{array} { l l l l } 1 & 4 & 8 & 3 \\0 & 1 & 4 & 8 \\0 & 0 & 1 & 4 \\0 & 0 & 0 & 1\end{array} \right] ​ ​

A)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & 4 & 8 & - 3 \\0 & 1 & - 4 & 8 \\0 & 0 & 1 & 4 \\0 & 0 & 0 & 1\end{array} \right]
B)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & - 4 & 8 & 3 \\0 & 1 & - 4 & 8 \\0 & 0 & 1 & - 4 \\0 & 0 & 0 & 1\end{array} \right]
C)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & - 4 & - 8 & - 3 \\0 & 1 & - 4 & - 8 \\0 & 0 & 1 & - 4 \\0 & 0 & 0 & 1\end{array} \right]
D)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & - 4 & 8 & - 3 \\0 & 1 & - 4 & 8 \\0 & 0 & 1 & - 4 \\0 & 0 & 0 & 1\end{array} \right]
E)​ [1483014800140001]\left[ \begin{array} { c c c c } 1 & 4 & 8 & - 3 \\0 & 1 & 4 & 8 \\0 & 0 & 1 & 4 \\0 & 0 & 0 & 1\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
47
​Solve the system of linear equations {4x+4y=38x20y=9\left\{ \begin{array} { l } 4 x + 4 y = 3 \\8 x - 20 y = - 9\end{array} \right. using an inverse matrix.

A)​ [xy]=[3141528]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 3 } { 14 } \\\\\frac { 15 } { 28 }\end{array} \right]
B)​ [xy]=[928127]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } \frac { 9 } { 28 } \\\\\frac { 12 } { 7 }\end{array} \right]
C)​ [xy]=[928314]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 9 } { 28 } \\\\\frac { - 3 } { 14 }\end{array} \right]
D)​ [xy]=[971528]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { 9 } { 7 } \\\\\frac { 15 } { 28 }\end{array} \right]
E)​ [xy]=[97314]\left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { c } \frac { - 9 } { 7 } \\\\\frac { - 3 } { 14 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the inverse of the matrix.​ [152015001]\left[ \begin{array} { l l l } 1 & 5 & 2 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]

A)​ [1523015001]\left[ \begin{array} { c c c } 1 & 5 & - 23 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]
B)​ [1523015001]\left[ \begin{array} { c c c } - 1 & - 5 & 23 \\0 & - 1 & - 5 \\0 & 0 & - 1\end{array} \right]
C)​ [1523015001]\left[ \begin{array} { c c c } 1 & - 5 & - 23 \\0 & 1 & - 5 \\0 & 0 & 1\end{array} \right]
D)​ [1523015001]\left[ \begin{array} { l l l } 1 & 5 & 23 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]
E)​ [1523015001]\left[ \begin{array} { c c c } 1 & - 5 & 23 \\0 & 1 & - 5 \\0 & 0 & 1\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the inverse of A.​ A=[412482001248]A = \left[ \begin{array} { c c c } - 4 & 12 & 4 \\8 & 20 & 0 \\12 & 4 & - 8\end{array} \right]

A)​ A1=136[1075412131011]A ^ { - 1 } = \frac { 1 } { 36 } \left[ \begin{array} { c c c } 10 & 7 & 5 \\4 & - 1 & 2 \\- 13 & 10 & - 11\end{array} \right]
B)​ A1=124[1075412131011]A ^ { - 1 } = \frac { 1 } { 24 } \left[ \begin{array} { c c c } 10 & 7 & 5 \\4 & 1 & 2 \\13 & 10 & 11\end{array} \right]
C)​ A1=128[1075412131011]A ^ { - 1 } = \frac { 1 } { 28 } \left[ \begin{array} { c c c } - 10 & 7 & - 5 \\4 & - 1 & 2 \\- 13 & 10 & - 11\end{array} \right]
D)​ A1=136[1075412131011]A ^ { - 1 } = \frac { 1 } { 36 } \left[ \begin{array} { c c c } - 10 & 7 & - 5 \\4 & - 1 & 2 \\- 13 & 10 & - 11\end{array} \right]
E)​ A1=128[1075412131011]A ^ { - 1 } = \frac { 1 } { 28 } \left[ \begin{array} { c c c } 10 & 7 & 5 \\4 & 1 & 2 \\13 & 10 & 11\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
50
Find the inverse of the matrix.​ [4114]\left[ \begin{array} { l l } 4 & 1 \\1 & 4\end{array} \right]

A)​​ [415115115415]\left[ \begin{array} { c c } \frac { 4 } { 15 } & \frac { 1 } { 15 } \\\\\frac { 1 } { 15 } & \frac { 4 } { 15 }\end{array} \right]
B)​ [415115115415]\left[ \begin{array} { l } - \frac { 4 } { 15 } - \frac { 1 } { 15 } \\- \frac { 1 } { 15 } - \frac { 4 } { 15 }\end{array} \right]
C)​ [415115115415\left[ \begin{array} { c c } \frac { 4 } { 15 } & - \frac { 1 } { 15 } \\- \frac { 1 } { 15 } & \frac { 4 } { 15 }\end{array} \right.
D)​ [415115115415]\left[ \begin{array} { c c } - \frac { 4 } { 15 } & \frac { 1 } { 15 } \\\frac { 1 } { 15 } & - \frac { 4 } { 15 }\end{array} \right]
E)​ [41500415]\left[ \begin{array} { c c } \frac { 4 } { 15 } & 0 \\0 & \frac { 4 } { 15 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
51
​Solve the system of linear equations {4x18x24x38x4=012x120x28x312x4=158x120x28x320x4=104x1+16x2+16x3+44x4=0\left\{ \begin{array} { l l } 4 x _ { 1 } - 8 x _ { 2 } - 4 x _ { 3 } - 8 x _ { 4 } & = 0 \\12 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 12 x _ { 4 } & = - 15 \\8 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 20 x _ { 4 } & = 10 \\- 4 x _ { 1 } + 16 x _ { 2 } + 16 x _ { 3 } + 44 x _ { 4 } & = 0\end{array} \right. using the inverse matrix 14[24712103012973212311]\frac { 1 } { 4 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\- 10 & 3 & 0 & - 1 \\- 29 & 7 & 3 & - 2 \\12 & - 3 & - 1 & 1\end{array} \right] .

A)​ [x1x2x3x4]=[954454754354]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { - 95 } { 4 } \\\\\frac { - 45 } { 4 } \\\\\frac { - 75 } { 4 } \\\\\frac { 35 } { 4 }\end{array} \right]
B)​ [x1x2x3x4]=[054052]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } 0 \\\frac { - 5 } { 4 } \\0 \\\frac { - 5 } { 2 }\end{array} \right]
C)​ [x1x2x3x4]=[4549540354]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { - 45 } { 4 } \\\\\frac { - 95 } { 4 } \\\\0 \\\\\frac { 35 } { 4 }\end{array} \right]
D)​ [x1x2x3x4]=[15454052]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { r } \frac { - 15 } { 4 } \\\frac { 5 } { 4 } \\0 \\\frac { 5 } { 2 }\end{array} \right]
E)​ [x1x2x3x4]=[354254454454]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { - 35 } { 4 } \\\\\frac { - 25 } { 4 } \\\\\frac { 45 } { 4 } \\\\\frac { - 45 } { 4 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
52
​Solve the system of linear equations {5x110x25x310x4=015x125x210x315x4=810x125x210x325x4=85x1+20x2+20x3+55x4=16\left\{ \begin{array} { l l } 5 x _ { 1 } - 10 x _ { 2 } - 5 x _ { 3 } - 10 x _ { 4 } & = 0 \\15 x _ { 1 } - 25 x _ { 2 } - 10 x _ { 3 } - 15 x _ { 4 } & = 8 \\10 x _ { 1 } - 25 x _ { 2 } - 10 x _ { 3 } - 25 x _ { 4 } & = - 8 \\- 5 x _ { 1 } + 20 x _ { 2 } + 20 x _ { 3 } + 55 x _ { 4 } & = 16\end{array} \right. using the inverse matrix 15[24712103012973212311]\frac { 1 } { 5 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\- 10 & 3 & 0 & - 1 \\- 29 & 7 & 3 & - 2 \\12 & - 3 & - 1 & 1\end{array} \right] .

A)​ [x1x2x3x4]=[1658585165]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 5 } \\\\\frac { 8 } { 5 } \\\\\frac { - 8 } { 5 } \\\\\frac { - 16 } { 5 }\end{array} \right]
B)​ [x1x2x3x4]=[0850165]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } 0 \\\\\frac { 8 } { 5 } \\\\0 \\\\\frac { 16 } { 5 }\end{array} \right]
C)​ [x1x2x3x4]=[1658500]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 5 } \\\\\frac { 8 } { 5 } \\\\0 \\\\0\end{array} \right]
D)​ [x1x2x3x4]=[245850165]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { 24 } { 5 } \\\\\frac { - 8 } { 5 } \\\\0 \\\\\frac { - 16 } { 5 }\end{array} \right]
E)​ [x1x2x3x4]=[24585165165]\left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 } \\x _ { 4 }\end{array} \right] = \left[ \begin{array} { c } \frac { 24 } { 5 } \\\\\frac { - 8 } { 5 } \\\\\frac { - 16 } { 5 } \\\\\frac { 16 } { 5 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the inverse of the matrix [36915]\left[ \begin{array} { c c } 3 & 6 \\- 9 & - 15\end{array} \right] .

A)​ 17[36915]\frac { 1 } { 7 } \left[ \begin{array} { c c } 3 & 6 \\- 9 & - 15\end{array} \right]
B)​ 13[5231]\frac { 1 } { 3 } \left[ \begin{array} { c c } - 5 & - 2 \\3 & 1\end{array} \right]
C)​ [36159]\left[ \begin{array} { c c } - 3 & - 6 \\15 & 9\end{array} \right]
D)​ [391221]\left[ \begin{array} { c c } 3 & - 9 \\12 & - 21\end{array} \right]
E)​ 113[36915]\frac { 1 } { 13 } \left[ \begin{array} { l l } - 3 & - 6 \\- 9 & 15\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find the inverse of the matrix [888244032244840]\left[ \begin{array} { c c c } 8 & 8 & 8 \\24 & 40 & 32 \\24 & 48 & 40\end{array} \right] .

A)​ 18[111321332]\frac { 1 } { 8 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right]
B)​ 18[111021332]\frac { 1 } { 8 } \left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & - 2 & - 1 \\3 & - 3 & 2\end{array} \right]
C)​ 8[111301332]8 \left[ \begin{array} { c c c } 1 & 1 & 1 \\- 3 & 0 & - 1 \\3 & - 3 & 2\end{array} \right]
D)​ 18[101321233]- \frac { 1 } { 8 } \left[ \begin{array} { c c c } 1 & 0 & - 1 \\- 3 & 2 & - 1 \\2 & - 3 & 3\end{array} \right]
E)​ 8[310311132]- 8 \left[ \begin{array} { c c c } 3 & 1 & 0 \\- 3 & 1 & - 1 \\1 & - 3 & 2\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
55
​Use the matrix capabilities of a graphing utility to solve the following system of linear equations: {15x5y=310x+10y=620z=12\left\{ \begin{array} { c c c } 15 x - 5 y & = & 3 \\10 x + 10 y & = & 6 \\20 z & = & - 12\end{array} \right.

A)​ [xyz]=[31091035]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 3 } { 10 } \\\\\frac { 9 } { 10 } \\\\\frac { - 3 } { 5 }\end{array} \right]
B)​ [xyz]=[910035]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 9 } { 10 } \\0 \\\frac { - 3 } { 5 }\end{array} \right]
C)​ [xyz]=[31031035]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 3 } { 10 } \\\\\frac { 3 } { 10 } \\\\\frac { - 3 } { 5 }\end{array} \right]
D)​ [xyz]=[3103100]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 3 } { 10 } \\\\\frac { - 3 } { 10 } \\\\0\end{array} \right]
E)​ [xyz]=[31031035]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 3 } { 10 } \\\\\frac { 3 } { 10 } \\\\\frac { - 3 } { 5 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
56
​Use the matrix capabilities of a graphing utility to solve the following system of linear equations:​ {14x+14y+21z=107x7y=57x+28z=20\left\{ \begin{array} { l l } - 14 x + 14 y + 21 z & = 10 \\7 x - 7 y & = - 5 \\7 x + 28 z & = 20\end{array} \right.

A)​ [xyz]=[2072570]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 20 } { 7 } \\\frac { 25 } { 7 } \\0\end{array} \right]
B)​ [xyz]=[1070157]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 10 } { 7 } \\0 \\\frac { - 15 } { 7 }\end{array} \right]
C)​ [xyz]=[15710757]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 15 } { 7 } \\\frac { 10 } { 7 } \\\frac { 5 } { 7 }\end{array} \right]
D)​ [xyz]=[57207107]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 7 } \\\\\frac { - 20 } { 7 } \\\\\frac { 10 } { 7 }\end{array} \right]
E)​ [xyz]=[157107107]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 15 } { 7 } \\\\\frac { - 10 } { 7 } \\\\ \frac { 10 } { 7 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find the inverse of the matrix [2154]\left[ \begin{array} { c c } - 2 & 1 \\5 & 4\end{array} \right] (if it exists).

A)​ 113[4152]\frac { 1 } { 13 } \left[ \begin{array} { c c } 4 & - 1 \\- 5 & - 2\end{array} \right]
B)​ 113[4152]- \frac { 1 } { 13 } \left[ \begin{array} { c c } 4 & - 1 \\- 5 & - 2\end{array} \right]
C)​ 113[4152]- \frac { 1 } { 13 } \left[ \begin{array} { c c } - 4 & 1 \\5 & 2\end{array} \right]
D)​ 113[2154]- \frac { 1 } { 13 } \left[ \begin{array} { c c } - 2 & 1 \\5 & 4\end{array} \right]
E)does not exist
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
58
Show that B is the inverse of A.Show all your work. Show that B is the inverse of A.Show all your work.   ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
59
​Solve the system of linear equations​ {9x+9y+9z=127x+45y+36z=327x+54y+45z=2\left\{ \begin{array} { l l } 9 x + 9 y + 9 z & = 1 \\27 x + 45 y + 36 z & = - 3 \\27 x + 54 y + 45 z & = 2\end{array} \right. ​using the inverse matrix 19[111321332]\frac { 1 } { 9 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right] .

A)​ [xyz]=[592349]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 9 } \\\\\frac { - 2 } { 3 } \\\\\frac { 4 } { 9 }\end{array} \right]
B)​ [xyz]=[49119169]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 4 } { 9 } \\\\\frac { - 11 } { 9 } \\\\\frac { 16 } { 9 }\end{array} \right]
C)​ [xyz]=[119frac16949]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 11 } { 9 } \\\\\\frac { 16 } { 9 } \\\\\frac { - 4 } { 9 }\end{array} \right]
D)​ [xyz]=[591329]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 9 } \\\\\frac { 1 } { 3 } \\\\\frac { - 2 } { 9 }\end{array} \right]
E)​ [xyz]=[16949119]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 9 } \\\\\frac { - 4 } { 9 } \\\\\frac { - 11 } { 9 }\end{array} \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 59 في هذه المجموعة.