Deck 60: Introduction to Conics Parabolas

ملء الشاشة (f)
exit full mode
سؤال
Find the vertex and focus of the parabola from the given equation and select its graph.​ y=16x2y = \frac { 1 } { 6 } x ^ { 2 }

A)Vertex: (0,0) Focus: (0,-1.5)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)   <div style=padding-top: 35px>
B)Vertex: (0,0) Focus: (-1.5,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)   <div style=padding-top: 35px>
C)Vertex: (0,0) Focus: (0,1.5)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)   <div style=padding-top: 35px>
D)Vertex: (0,0) Focus: (0,1.5)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)   <div style=padding-top: 35px>
E)Vertex: (0,0) Focus: (0,-1.5)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)   <div style=padding-top: 35px>
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the vertex and focus of the parabola from the given equation and select its graph.​ x2+16y=0x ^ { 2 } + 16 y = 0

A)Vertex: (0,0) Focus: (4,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)   <div style=padding-top: 35px>
B)Vertex: (0,0) Focus: (-4,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)   <div style=padding-top: 35px>
C)Vertex: (0,-4) Focus: (0,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)   <div style=padding-top: 35px>
D)Vertex: (0,0) Focus: (0,4)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)   <div style=padding-top: 35px>
E)Vertex: (0,0) Focus: (0,-4)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)   <div style=padding-top: 35px>
سؤال
Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​ x236+y29=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1

A)Center: (0,0) Vertices: (-6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​   <div style=padding-top: 35px>
B)Center: (0,0) Vertices: (±6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​   <div style=padding-top: 35px>
C)Center: (0,0) Vertices: (-6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​   <div style=padding-top: 35px>
D)Center: (0,0) Vertices: (±6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​   <div style=padding-top: 35px>
E)Center: (0,0) Vertices: (6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​   <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Directrix: y = 2

A) x2=8yx ^ { 2 } = - 8 y
B) x2=8yx ^ { 2 } = 8 y
C) y2=8xy ^ { 2 } = - 8 x
D) y2=8xy ^ { 2 } = 8 x
E) x2=y8x ^ { 2 } = - \frac { y } { 8 }
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Directrix: x = 3

A) x2=12yx ^ { 2 } = - 12 y
B) y2=12xy ^ { 2 } = 12 x
C) y2=x12y ^ { 2 } = \frac { x } { 12 }
D) x2=12yx ^ { 2 } = 12 y
E) y2=12xy ^ { 2 } = - 12 x
سؤال
Find the vertex and focus of the parabola from the given equation and select its graph.​ 2x+y2=02 x + y ^ { 2 } = 0

A)Vertex: (0,0) Focus: (- 12\frac { 1 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)   <div style=padding-top: 35px>
B)Vertex: (- 12\frac { 1 } { 2 } ,0) Focus: (0,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)   <div style=padding-top: 35px>
C)Vertex: (0,0) Focus: (0, 12\frac { 1 } { 2 } )  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)   <div style=padding-top: 35px>
D)Vertex: (0,0) Focus: (0,- 12\frac { 1 } { 2 } )  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)   <div style=padding-top: 35px>
E)Vertex: (0,0) Focus: ( 12\frac { 1 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)   <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Passes through the point (2,4);horizontal axis

A) x2=8yx ^ { 2 } = 8 y
B) x2=8yx ^ { 2 } = - 8 y
C) y2=8xy ^ { 2 } = 8 x
D) y2=8xy ^ { 2 } = - 8 x
E) y2=x8y ^ { 2 } = \frac { x } { 8 }
سؤال
Find the vertex and focus of the parabola for the given equation and select its graph.​ y=3x2y = - 3 x ^ { 2 }

A)Vertex: (0,0) Focus: (0,3)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)    <div style=padding-top: 35px>
B)Vertex: (0,0) Focus: (0,-12)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)    <div style=padding-top: 35px>
C)Vertex: (0,0) Focus: (0,-3)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)    <div style=padding-top: 35px>
D)Vertex: (0,0) Focus: (0,112)\left( 0 , - \frac { 1 } { 12 } \right)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)    <div style=padding-top: 35px>
E)Vertex: (0,0) Focus: (0,13)\left( 0 , \frac { 1 } { 3 } \right)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)    <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Focus: (0, 12\frac { 1 } { 2 } )

A) y2=2xy ^ { 2 } = - 2 x
B) x2=2yx ^ { 2 } = - 2 y
C) y2=2xy ^ { 2 } = 2 x
D) x2=2yx ^ { 2 } = 2 y
E) x2=y2x ^ { 2 } = \frac { y } { 2 }
سؤال
Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​ x29+y21/9=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1

A)Center: (0,0) Vertices: (±3,0)  <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​   <div style=padding-top: 35px>
B)Center: (0,0) Vertices: (-3,0)  <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​   <div style=padding-top: 35px>
C)Center: (0,0) Vertices: (3,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​   <div style=padding-top: 35px>
D)Center: (0,0) Vertices: (±3,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​   <div style=padding-top: 35px>
E)Center: (0,0) Vertices: (-3,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​   <div style=padding-top: 35px>
سؤال
Select the standard form of the equation of the parabola and determine the coordinates of the focus.​  <strong>Select the standard form of the equation of the parabola and determine the coordinates of the focus.​   ​</strong> A)  x ^ { 2 } = \frac { 5 } { 2 } y  ;Focus:  \left( 0 , \frac { 5 } { 8 } \right)  B)  y ^ { 2 } = - \frac { 5 } { 2 } x  ;Focus:  \left( - \frac { 5 } { 8 } , 0 \right)  C)  x ^ { 2 } = - \frac { 5 } { 2 } y  ;Focus:  \left( 0 , - \frac { 5 } { 8 } \right)  D)  y ^ { 2 } = \frac { 5 } { 2 } x  ;Focus:  \left( \frac { 5 } { 8 } , 0 \right)  E)  y ^ { 2 } = \frac { 5 } { 2 } x  ;Focus:  ( 5,0 )  <div style=padding-top: 35px>

A) x2=52yx ^ { 2 } = \frac { 5 } { 2 } y ;Focus: (0,58)\left( 0 , \frac { 5 } { 8 } \right)
B) y2=52xy ^ { 2 } = - \frac { 5 } { 2 } x ;Focus: (58,0)\left( - \frac { 5 } { 8 } , 0 \right)
C) x2=52yx ^ { 2 } = - \frac { 5 } { 2 } y ;Focus: (0,58)\left( 0 , - \frac { 5 } { 8 } \right)
D) y2=52xy ^ { 2 } = \frac { 5 } { 2 } x ;Focus: (58,0)\left( \frac { 5 } { 8 } , 0 \right)
E) y2=52xy ^ { 2 } = \frac { 5 } { 2 } x ;Focus: (5,0)( 5,0 )
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Focus: (72,0)\left( - \frac { 7 } { 2 } , 0 \right)

A) x2=14yx ^ { 2 } = 14 y
B) y2=14xy ^ { 2 } = - 14 x
C) y2=14xy ^ { 2 } = 14 x
D) x2=14yx ^ { 2 } = - 14 y
E) y2=x14y ^ { 2 } = - \frac { x } { 14 }
سؤال
Find the vertex and focus of the parabola from the given equation and select its graph.​ y2=6xy ^ { 2 } = 6 x

A)Vertex: (0,0) Focus: (- 32\frac { 3 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   <div style=padding-top: 35px>
B)Vertex: (0,0) Focus: (0,- 32\frac { 3 } { 2 } )  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   <div style=padding-top: 35px>
C)Vertex: (0,0) Focus: ( 32\frac { 3 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   <div style=padding-top: 35px>
D)Vertex: (0,0) Focus: (0, 32\frac { 3 } { 2 } )  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   <div style=padding-top: 35px>
E)Vertex: (0,0) Focus: ( 32\frac { 3 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Passes through the point (5,13)\left( - 5 , \frac { 1 } { 3 } \right) ;vertical axis

A) x2=75yx ^ { 2 } = 75 y
B) x2=75yx ^ { 2 } = - 75 y
C) y2=75xy ^ { 2 } = - 75 x
D) y2=75xy ^ { 2 } = 75 x
E) x2=y75x ^ { 2 } = \frac { y } { 75 }
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Directrix: x = -4

A) y2=16xy ^ { 2 } = - 16 x
B) y2=16xy ^ { 2 } = 16 x
C) x2=16yx ^ { 2 } = - 16 y
D) x2=16yx ^ { 2 } = 16 y
E) y2=x16y ^ { 2 } = \frac { x } { 16 }
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Focus: (0,-2)

A) y2=8xy ^ { 2 } = 8 x
B) x2=8yx ^ { 2 } = - 8 y
C) y2=8xy ^ { 2 } = - 8 x
D) x2=8yx ^ { 2 } = 8 y
E) x2=y8x ^ { 2 } = - \frac { y } { 8 }
سؤال
Find the vertex and focus of the parabola for the given equation and select its graph.​ y2=4xy ^ { 2 } = - 4 x

A)Vertex: (0,0) Focus: (1,0)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)   <div style=padding-top: 35px>
B)Vertex: (0,0) Focus: (1,0)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)   <div style=padding-top: 35px>
C)Vertex: (0,0) Focus: (-1,0)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)   <div style=padding-top: 35px>
D)Vertex: (0,0) Focus: ( - 1,0)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)   <div style=padding-top: 35px>
E)Vertex: (0,0) Focus: (0,1)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)   <div style=padding-top: 35px>
سؤال
Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​ x2100+y249=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1

A)Center: (0,0) Vertices: (±10,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​   <div style=padding-top: 35px>
B)Center: (0,0) Vertices: (10,0)  <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​   <div style=padding-top: 35px>
C)Center: (0,0) Vertices: (-10,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​   <div style=padding-top: 35px>
D)Center: (0,0) Vertices: (-10,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​   <div style=padding-top: 35px>
E)Center: (0,0) Vertices: (±10,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​   <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Focus: (-4,0)

A) y2=16xy ^ { 2 } = - 16 x
B) y2=16xy ^ { 2 } = 16 x
C) x2=16yx ^ { 2 } = - 16 y
D) x2=16yx ^ { 2 } = - 16 y
E) y2=x16y ^ { 2 } = - \frac { x } { 16 }
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Directrix: y = -1

A) y2=4xy ^ { 2 } = 4 x
B) x2=y4x ^ { 2 } = - \frac { y } { 4 }
C) x2=4yx ^ { 2 } = 4 y
D) y2=4xy ^ { 2 } = - 4 x
E) x2=4yx ^ { 2 } = - 4 y
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. focus: (0,-1)

A)y2 = -4x
B)x2 = -4y
C)x2 = y
D)y2 = -x
E)x2 = -y
سؤال
Identify the conic.​ 4y2+5x220=04 y ^ { 2 } + 5 x ^ { 2 } - 20 = 0

A)Ellipse
B)Circle
C)Parabola
D)Line
E)Hyperbola
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. directrix: x = -5

A)y2 = 20x
B)y2 = -5x
C)x2 = -20y
D)x2 = -5y
E)x2 = 20y
سؤال
Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​
Vertices: (±3,0);passes through the point ​ (5,3)( 5 , \sqrt { 3 } )

A) y29x227/16=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 27 / 16 } = - 1
B) x227/16+y29=1\frac { x ^ { 2 } } { 27 / 16 } + \frac { y ^ { 2 } } { 9 } = 1
C) x29y227/16=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 27 / 16 } = 1
D) x227/16+y29=1\frac { x ^ { 2 } } { 27 / 16 } + \frac { y ^ { 2 } } { 9 } = - 1
E) y29+x227/16=1\frac { y ^ { 2 } } { 9 } + \frac { x ^ { 2 } } { 27 / 16 } = 1
سؤال
Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​ 4y225x2=1004 y ^ { 2 } - 25 x ^ { 2 } = 100

A)Centre: (0,0) Vertices: (0,-5)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)   <div style=padding-top: 35px>
B)Centre: (0,0) Vertices: (±5,0)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)   <div style=padding-top: 35px>
C)Centre: (0,0) Vertices: (0,±5)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)   <div style=padding-top: 35px>
D)Centre: (0,0) Vertices: (0,5)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)   <div style=padding-top: 35px>
E)Centre: (0,0) Vertices: (5,0)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)   <div style=padding-top: 35px>
سؤال
Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​ x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1

A)Center: (0,0) Vertices: (-5,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)   <div style=padding-top: 35px>
B)Center: (0,0) Vertices: (-3,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)   <div style=padding-top: 35px>
C)Center: (0,0) Vertices: (3,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)   <div style=padding-top: 35px>
D)Center: (0,0) Vertices: (±5,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)   <div style=padding-top: 35px>
E)Center: (0,0) Vertices: (±3,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)   <div style=padding-top: 35px>
سؤال
Select the standard form of the equation of the parabola and determine the coordinates of the focus. ​​  <strong>Select the standard form of the equation of the parabola and determine the coordinates of the focus. ​​   ​</strong> A)  y ^ { 2 } = - \frac { 49 } { 5 } x  ;Focus:  \left( \frac { 49 } { 20 } , 0 \right)  B)  y ^ { 2 } = \frac { 49 } { 5 } x  ;Focus:  \left( \frac { 49 } { 20 } , 0 \right)  C)  y ^ { 2 } = - \frac { 49 } { 5 } x  ;Focus:  \left( - \frac { 49 } { 20 } , 0 \right)  D)  x ^ { 2 } = - \frac { 49 } { 5 } y  Focus:  \left( \frac { 49 } { 20 } , 0 \right)  E)  x ^ { 2 } = \frac { 49 } { 5 } y  ;Focus:  \left( \frac { 49 } { 20 } , 0 \right)  <div style=padding-top: 35px>

A) y2=495xy ^ { 2 } = - \frac { 49 } { 5 } x ;Focus: (4920,0)\left( \frac { 49 } { 20 } , 0 \right)
B) y2=495xy ^ { 2 } = \frac { 49 } { 5 } x ;Focus: (4920,0)\left( \frac { 49 } { 20 } , 0 \right)
C) y2=495xy ^ { 2 } = - \frac { 49 } { 5 } x ;Focus: (4920,0)\left( - \frac { 49 } { 20 } , 0 \right)
D) x2=495yx ^ { 2 } = - \frac { 49 } { 5 } y Focus: (4920,0)\left( \frac { 49 } { 20 } , 0 \right)
E) x2=495yx ^ { 2 } = \frac { 49 } { 5 } y ;Focus: (4920,0)\left( \frac { 49 } { 20 } , 0 \right)
سؤال
Find the vertex and focus of the parabola. x2+8y=0x ^ { 2 } + 8 y = 0

A)vertex: (0,0)focus: (0,-2)
B)vertex: (2,0)focus: (0,0)
C)vertex: (0,0)focus: (-2,0)
D)vertex: (0,0)focus: (0,2)
E)vertex: (-2,0)focus: (0,0)
سؤال
Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​
Vertices: (0,±3);focies: (0,±7)
​ ​

A) y29x240=1- \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 40 } = 1
B) y240x29=1\frac { y ^ { 2 } } { 40 } - \frac { x ^ { 2 } } { 9 } = 1
C) y29+x240=1\frac { y ^ { 2 } } { 9 } + \frac { x ^ { 2 } } { 40 } = 1
D) y240x29=1\frac { y ^ { 2 } } { 40 } - \frac { x ^ { 2 } } { 9 } = - 1
E) y29x240=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 40 } = 1
سؤال
A solar oven uses a parabolic reflector to focus the sun's rays at a point 5 inches from the vertex of the reflector (see figure).Write an equation for a cross section of the oven's reflector with its focus on the positive y axis and its vertex at the origin.  <strong>A solar oven uses a parabolic reflector to focus the sun's rays at a point 5 inches from the vertex of the reflector (see figure).Write an equation for a cross section of the oven's reflector with its focus on the positive y axis and its vertex at the origin.   L = 5 inches</strong> A)  y = 5 x ^ { 2 }  B)  x ^ { 2 } = 5 y  C)  y = 20 x ^ { 2 }  D)  x ^ { 2 } = 20 y  E)​  y = \frac { 1 } { 5 } x ^ { 2 }  <div style=padding-top: 35px>  L = 5 inches

A) y=5x2y = 5 x ^ { 2 }
B) x2=5yx ^ { 2 } = 5 y
C) y=20x2y = 20 x ^ { 2 }
D) x2=20yx ^ { 2 } = 20 y
E)​ y=15x2y = \frac { 1 } { 5 } x ^ { 2 }
سؤال
Find the vertex and focus of the parabola. y2=92xy ^ { 2 } = - \frac { 9 } { 2 } x

A)vertex: (0,0)focus: (98,0)\left( - \frac { 9 } { 8 } , 0 \right)
B)vertex: (0,54)\left( 0 , - \frac { 5 } { 4 } \right) focus: (92,92)\left( - \frac { 9 } { 2 } , - \frac { 9 } { 2 } \right)
C)vertex: (0,0)focus: (0,92)\left( 0 , - \frac { 9 } { 2 } \right)
D)vertex: (0,54)\left( 0 , - \frac { 5 } { 4 } \right) focus: (0,98)\left( 0 , - \frac { 9 } { 8 } \right)
E)vertex: (0,0)focus: (92,0)\left( - \frac { 9 } { 2 } , 0 \right)
سؤال
Find the standard form of the equation of the ellipse with the given characteristics and center at the origin. ​
Focies: (±7,0);major axis of length 16

A) x264+y215=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 15 } = 1
B) x264y215=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 15 } = 1
C) x215+y264=1- \frac { x ^ { 2 } } { 15 } + \frac { y ^ { 2 } } { 64 } = 1
D) x264+y215=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 15 } = - 1
E) x215+y264=1\frac { x ^ { 2 } } { 15 } + \frac { y ^ { 2 } } { 64 } = 1
سؤال
A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​

A)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
سؤال
Identify the conic.​ 4y28x=04 y ^ { 2 } - 8 x = 0

A)Circle
B)Ellipse
C)Parabola
D)Hyperbola
E)Line
سؤال
Find the standard form of the equation of the parabola and determine the coordinates of the focus.  <strong>Find the standard form of the equation of the parabola and determine the coordinates of the focus.  </strong> A)  x ^ { 2 } = - 4 y  ,focus:  \left( 0 , - \frac { 1 } { 4 } \right)  B)  x ^ { 2 } = - \frac { 1 } { 16 } y  ,focus:  \left( 0 , - \frac { 1 } { 16 } \right)  C)  x ^ { 2 } = - \frac { 1 } { 4 } y  ,focus:  \left( 0 , - \frac { 1 } { 16 } \right)  D)  x ^ { 2 } = - 4 y  ,focus: (0,-4) E)  x ^ { 2 } = - \frac { 1 } { 4 } y  ,focus:  \left( 0 , - \frac { 1 } { 4 } \right)  <div style=padding-top: 35px>

A) x2=4yx ^ { 2 } = - 4 y ,focus: (0,14)\left( 0 , - \frac { 1 } { 4 } \right)
B) x2=116yx ^ { 2 } = - \frac { 1 } { 16 } y ,focus: (0,116)\left( 0 , - \frac { 1 } { 16 } \right)
C) x2=14yx ^ { 2 } = - \frac { 1 } { 4 } y ,focus: (0,116)\left( 0 , - \frac { 1 } { 16 } \right)
D) x2=4yx ^ { 2 } = - 4 y ,focus: (0,-4)
E) x2=14yx ^ { 2 } = - \frac { 1 } { 4 } y ,focus: (0,14)\left( 0 , - \frac { 1 } { 4 } \right)
سؤال
Identify the conic.​ 4y23x2+12=04 y ^ { 2 } - 3 x ^ { 2 } + 12 = 0

A)Circle
B)Ellipse
C)Hyperbola
D)Parabola
E)Line
سؤال
Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​
Vertices: (0,±5);focies: (0,±6)

A) y225x211=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 11 } = - 1
B) y225+x211=1\frac { y ^ { 2 } } { 25 } + \frac { x ^ { 2 } } { 11 } = 1
C) y225x211=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 11 } = 1
D) y225+x211=1\frac { y ^ { 2 } } { 25 } + \frac { x ^ { 2 } } { 11 } = - 1
E) y225+x211=1- \frac { y ^ { 2 } } { 25 } + \frac { x ^ { 2 } } { 11 } = - 1
سؤال
Match the equation with its graph. x2+4y2=4x ^ { 2 } + 4 y ^ { 2 } = 4

A)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​ <div style=padding-top: 35px>
B)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​ <div style=padding-top: 35px>
C)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​ <div style=padding-top: 35px>
D)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​ <div style=padding-top: 35px>
E)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​ <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the ellipse with the given characteristics and center at the origin. ​
Vertices: (0,±7);focies: (0,±4)

A) x249+y233=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = 1
B) x233+y249=1\frac { x ^ { 2 } } { 33 } + \frac { y ^ { 2 } } { 49 } = 1
C) x249+y233=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = - 1
D) x249+y233=1- \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = 1
E) x233+y249=1\frac { x ^ { 2 } } { 33 } + \frac { y ^ { 2 } } { 49 } = - 1
سؤال
Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​
Vertices: (0,±2);asymptotes: y = ± 32\frac { 3 } { 2 } x

A) y29+x24=1\frac { y ^ { 2 } } { 9 } + \frac { x ^ { 2 } } { 4 } = 1
B) y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
C) y29x24=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = - 1
D) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1
E) y29x24=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = 1
سؤال
Find the standard form of the equation of the hyperbola with the given characteristics. focies: (±4,0),asymptotes: y=±5xy = \pm 5 x

A) x2126y2126=1\frac { x ^ { 2 } } { \frac { 1 } { 26 } } - \frac { y ^ { 2 } } { \frac { 1 } { 26 } } = 1
B) x2813y220013=1\frac { x ^ { 2 } } { \frac { 8 } { 13 } } - \frac { y ^ { 2 } } { \frac { 200 } { 13 } } = 1
C) y225x216=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1
D) x216y2400=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 400 } = 1
E) x220013y2813=1\frac { x ^ { 2 } } { \frac { 200 } { 13 } } - \frac { y ^ { 2 } } { \frac { 8 } { 13 } } = 1
سؤال
Find the standard form of the equation of the hyperbola with the given characteristics. vertices: (0,±4)focies: (0,±5)

A) x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
B) x216y225=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1
C) y216x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1
D) y216x29=25\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 25
E) y216x225=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1
سؤال
Find the standard form of the equation of the ellipse with the following graph.  <strong>Find the standard form of the equation of the ellipse with the following graph.  </strong> A)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 0  ,  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 0  ,  x ^ { 2 } + \frac { y ^ { 2 } } { 16 } = 0  B)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 100  ,  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1  ,  x ^ { 2 } - \frac { y ^ { 2 } } { 16 } = 1  C)  25 x ^ { 2 } + 4 y ^ { 2 } = 1  ,  \frac { x ^ { 2 } } { 2 } - \frac { y ^ { 2 } } { 36 } = 1  ,  \frac { x ^ { 2 } } { 16 } - y ^ { 2 } = 1  D)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1  ,  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  ,  x ^ { 2 } + \frac { y ^ { 2 } } { 16 } = 1  E)  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1  ,  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1  ,  \frac { x ^ { 2 } } { 16 } + y ^ { 2 } = 1  <div style=padding-top: 35px>

A) x24+y225=0\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 0 , x236+y24=0\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 0 , x2+y216=0x ^ { 2 } + \frac { y ^ { 2 } } { 16 } = 0
B) x24+y225=100\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 100 , x236y24=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1 , x2y216=1x ^ { 2 } - \frac { y ^ { 2 } } { 16 } = 1
C) 25x2+4y2=125 x ^ { 2 } + 4 y ^ { 2 } = 1 , x22y236=1\frac { x ^ { 2 } } { 2 } - \frac { y ^ { 2 } } { 36 } = 1 , x216y2=1\frac { x ^ { 2 } } { 16 } - y ^ { 2 } = 1
D) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 , x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1 , x2+y216=1x ^ { 2 } + \frac { y ^ { 2 } } { 16 } = 1
E) x225+y24=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 , x24+y236=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1 , x216+y2=1\frac { x ^ { 2 } } { 16 } + y ^ { 2 } = 1
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. Focus: (0,12)\left( 0 , \frac { 1 } { 2 } \right)

A) x2=24yx ^ { 2 } = \frac { 2 } { 4 } y
B) y2=24xy ^ { 2 } = \frac { 2 } { 4 } x
C) y2=42xy ^ { 2 } = \frac { 4 } { 2 } x
D) x2=42yx ^ { 2 } = \frac { 4 } { 2 } y
E) y2=xy ^ { 2 } = x
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Vertical axis and passes through the point (6,8)

A) x2=368yx ^ { 2 } = \frac { 36 } { 8 } y
B) y2=836xy ^ { 2 } = \frac { 8 } { 36 } x
C) x2=836yx ^ { 2 } = \frac { 8 } { 36 } y
D) y2=xy ^ { 2 } = x
E)​ y2=368xy ^ { 2 } = \frac { 36 } { 8 } x
سؤال
Write an equation for a cross section of the parabolic ear (used to hear sounds from a distance)shown in the picture.  <strong>Write an equation for a cross section of the parabolic ear (used to hear sounds from a distance)shown in the picture.   ​ d = 2.25 inches</strong> A)  x ^ { 2 } = 9 y  B)​  y ^ { 2 } = \frac { 1 } { 9 } x  C)​  x ^ { 2 } = 2.25 y  D)​  y ^ { 2 } = 2.25 x  E)  y ^ { 2 } = 9 x  <div style=padding-top: 35px>  ​ d = 2.25 inches

A) x2=9yx ^ { 2 } = 9 y
B)​ y2=19xy ^ { 2 } = \frac { 1 } { 9 } x
C)​ x2=2.25yx ^ { 2 } = 2.25 y
D)​ y2=2.25xy ^ { 2 } = 2.25 x
E) y2=9xy ^ { 2 } = 9 x
سؤال
Find the center and the vertices which located on the major axis of the ellipse. 81x2+y2=8181 x ^ { 2 } + y ^ { 2 } = 81

A)center: (0,0)vertices: (-9,0), (9,0)
B)center: (0,0)vertices: (0,-9), (0,9)
C)center: (-9,9)vertices: (-1,0), (1,0)
D)center: (0,0)vertices: (-9,-1), (9,1)
E)center: (-9,9)vertices: (-1,-9), (1,9)
سؤال
Select the graph of the following equation.​ x2=8yx ^ { 2 } = 8 y

A)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. Focus: (0,4)( 0 , - 4 )

A) x2=16yx ^ { 2 } = 16 y
B) y2=xy ^ { 2 } = x
C) y2=16xy ^ { 2 } = 16 x
D) x2=16yx ^ { 2 } = - 16 y
E) y2=16xy ^ { 2 } = - 16 x
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. Focus: (3,0)( - 3,0 )

A) x2=yx ^ { 2 } = y
B) y2=12xy ^ { 2 } = 12 x
C) y2=12xy ^ { 2 } = - 12 x
D) x2=12yx ^ { 2 } = 12 y
E) x2=12yx ^ { 2 } = - 12 y
سؤال
Find the standard form of the equation of the ellipse with the following characteristics. focies: (±8,0)major axis of length: 22

A) x2484+y264=1\frac { x ^ { 2 } } { 484 } + \frac { y ^ { 2 } } { 64 } = 1
B)​ x2121+y264=1\frac { x ^ { 2 } } { 121 } + \frac { y ^ { 2 } } { 64 } = 1
C) x2121+y257=1\frac { x ^ { 2 } } { 121 } + \frac { y ^ { 2 } } { 57 } = 1
D) x2484+y2420=1\frac { x ^ { 2 } } { 484 } + \frac { y ^ { 2 } } { 420 } = 1
E) x264+y2121=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 121 } = 1
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Directrix: y=3y = 3

A) y2=12xy ^ { 2 } = - 12 x
B) y2=xy ^ { 2 } = x
C) y2=12xy ^ { 2 } = 12 x
D) x2=12yx ^ { 2 } = 12 y
E) x2=12yx ^ { 2 } = - 12 y
سؤال
Sketch the graph of the ellipse,using the lateral recta.​ x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1

A)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
سؤال
Select the graph of the following equation: ​​ y2=2xy ^ { 2 } = - 2 x

A)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Directrix: x=6x = - 6

A) y2=24xy ^ { 2 } = 24 x
B) y2=xy ^ { 2 } = x
C) y2=24xy ^ { 2 } = - 24 x
D) x2=24yx ^ { 2 } = 24 y
E) x2=24yx ^ { 2 } = - 24 y
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Vertical axis and passes through the point (-8,-8)

A) y2=8xy ^ { 2 } = - 8 x
B) y2=xy ^ { 2 } = x
C) x2=8yx ^ { 2 } = - 8 y
D) x2=8yx ^ { 2 } = 8 y
E) y2=8xy ^ { 2 } = 8 x
سؤال
Find the vertices and asymptotes of the hyperbola. 25y24x2=10025 y ^ { 2 } - 4 x ^ { 2 } = 100

A)vertices: (±2,0),asymptote: y=±52xy = \pm \frac { 5 } { 2 } x
B)vertices: (0,±2),asymptote: y=±25xy = \pm \frac { 2 } { 5 } x
C)vertices: (±2,0),asymptote: y=±25xy = \pm \frac { 2 } { 5 } x
D)vertices: (0,±2),asymptote: y=±52xy = \pm \frac { 5 } { 2 } x
E)vertices: (±2,5),asymptote: y=±25xy = \pm \frac { 2 } { 5 } x
سؤال
Find the center and vertices which located on the major axis of the ellipse. x225+y29=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1

A)center: (0,0)vertices: (0,-5), (0,5)
B)center: (0,0)vertices: (-3,0), (3,0)
C)center: (5,3)vertices: (-5,-3), (5,3)
D)center: (0,0)vertices: (-5,0), (5,0)
E)center: (5,0)vertices: (0,-3), (0,3)
سؤال
Sketch the graph of the ellipse,using the lateral recta.​ 16x2+4y2=6416 x ^ { 2 } + 4 y ^ { 2 } = 64

A)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. Focus: (72,0)\left( - \frac { 7 } { 2 } , 0 \right)

A) y2=282xy ^ { 2 } = - \frac { 28 } { 2 } x
B) x2=228yx ^ { 2 } = \frac { 2 } { 28 } y
C) y2=228xy ^ { 2 } = - \frac { 2 } { 28 } x
D) x2=228yx ^ { 2 } = - \frac { 2 } { 28 } y
E) y2=228xy ^ { 2 } = \frac { 2 } { 28 } x
سؤال
Find the standard form of the equation of the parabola with the given characteristics. ​
Vertex: (1,2)( 1,2 ) ;directrix: y=2y = - 2

A) (y1)2=2(x2)( y - 1 ) ^ { 2 } = 2 ( x - 2 )
B) (x1)2=16(y2)( x - 1 ) ^ { 2 } = - 16 ( y - 2 )
C) (y1)2=16(x2)( y - 1 ) ^ { 2 } = - 16 ( x - 2 )
D) (x1)2=2(y2)( x - 1 ) ^ { 2 } = 2 ( y - 2 )
E) (x1)2=16(y2)( x - 1 ) ^ { 2 } = 16 ( y - 2 )
سؤال
Find the standard form of the equation of the parabola with the given characteristics. ​
Vertex: (5,5)( - 5,5 ) ;focus: (5,0)( - 5,0 )

A) (x5)2=20(y5)( x - 5 ) ^ { 2 } = 20 ( y - 5 )
B) (x5)2=20(y5)( x - 5 ) ^ { 2 } = - 20 ( y - 5 )
C) (y5)2=20(x5)( y - 5 ) ^ { 2 } = - 20 ( x - 5 )
D) (y5)2=20(x5)( y - 5 ) ^ { 2 } = 20 ( x - 5 )
E) (x+5)2=20(y5)( x + 5 ) ^ { 2 } = - 20 ( y - 5 )
سؤال
Find the vertex,focus,and directrix of the parabola.​ (x+72)2=4(y1)\left( x + \frac { 7 } { 2 } \right) ^ { 2 } = 4 ( y - 1 )

A)Vertex: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Focus: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Directrix: y=0y = 0
B)Vertex: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Focus: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Directrix: y=1y = 1
C)Vertex: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Focus: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Directrix: y=0y = 0
D)Vertex: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Focus: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Directrix: y=1y = 1
E)Vertex: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Focus: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Directrix: y=1y = 1
سؤال
The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​
Parabola: y224x=0y ^ { 2 } - 24 x = 0 Tangent Line: xy+6=0x - y + 6 = 0

A)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
سؤال
Find the equation of the parabola so that its graph matches the description.​ (y5)2=2(x+1)( y - 5 ) ^ { 2 } = 2 ( x + 1 ) ;upper half of parabola ​

A) x=2(y+1)+5x = \sqrt { 2 ( y + 1 ) } + 5
B) x=2(y+1)+5x = - \sqrt { 2 ( y + 1 ) } + 5
C) y=2(x1)+5y = \sqrt { 2 ( x - 1 ) } + 5
D) y=2(x+1)+5y = \sqrt { 2 ( x + 1 ) } + 5
E) y=2(x+1)+5y = - \sqrt { 2 ( x + 1 ) } + 5
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Horizontal axis and passes through the point (3,2)( 3 , - 2 )

A) y2=xy ^ { 2 } = x
B) y2=43xy ^ { 2 } = \frac { 4 } { 3 } x
C) y2=34xy ^ { 2 } = \frac { 3 } { 4 } x
D) x2=43yx ^ { 2 } = \frac { 4 } { 3 } y
E) x2=34yx ^ { 2 } = \frac { 3 } { 4 } y
سؤال
Find the vertex,focus,and directrix of the parabola.​ y2=3xy ^ { 2 } = - 3 x

A)Vertex: (0,0);Focus: (34,0)\left( - \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = - \frac { 3 } { 4 }
B)Vertex: (0,0);Focus: (13,0)\left( - \frac { 1 } { 3 } , 0 \right) ;Directrix: x=13x = \frac { 1 } { 3 }
C)Vertex: (0,0);Focus: (13,0)\left( \frac { 1 } { 3 } , 0 \right) ;Directrix: x=13x = \frac { 1 } { 3 }
D)Vertex: (0,0);Focus: (34,0)\left( \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = - \frac { 3 } { 4 }
E)Vertex: (0,0);Focus: (34,0)\left( - \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = \frac { 3 } { 4 }
سؤال
Find the equation of the parabola so that its graph matches the description.​ (y+2)2=3(x7)( y + 2 ) ^ { 2 } = 3 ( x - 7 ) ;lower half of parabola ​

A) y=2+3(x7)y = - 2 + \sqrt { 3 ( x - 7 ) }
B) y=23(x7)y = - 2 - \sqrt { 3 ( x - 7 ) }
C) x=2+3(y7)x = - 2 + \sqrt { 3 ( y - 7 ) }
D) x=23(y7)x = - 2 - \sqrt { 3 ( y - 7 ) }
E) x=2+3(y+7)x = - 2 + \sqrt { 3 ( y + 7 ) }
سؤال
Find the vertex,focus,and directrix of the parabola.​ x2+4y=0x ^ { 2 } + 4 y = 0

A)Vertex: (0,0);Focus: (14,0)\left( \frac { 1 } { 4 } , 0 \right) ;Directrix: y=14y = \frac { 1 } { 4 }
B)Vertex: (0,0);Focus: (14,0)\left( - \frac { 1 } { 4 } , 0 \right) ;Directrix: y=14y = \frac { 1 } { 4 }
C)Vertex: (0,0): Focus: (0,44)\left( 0 , \frac { 4 } { 4 } \right) Directrix: y=44y = - \frac { 4 } { 4 }
D)Vertex: (0,0);Focus: (0,44)\left( 0 , - \frac { 4 } { 4 } \right) ;Directrix: y=44y = \frac { 4 } { 4 }
E)Vertex: (0,0);Focus: (0,44)\left( 0 , - \frac { 4 } { 4 } \right) ;Directrix: y=44y = - \frac { 4 } { 4 }
سؤال
Find the vertex,focus,and directrix of the parabola.​ (x+5)2=4(y52)( x + 5 ) ^ { 2 } = 4 \left( y - \frac { 5 } { 2 } \right)

A)Vertex: (5,52)\left( - 5 , \frac { 5 } { 2 } \right) ;Focus: (5,72)\left( - 5 , \frac { 7 } { 2 } \right) ;Directrix: y=32y = \frac { 3 } { 2 }
B)Vertex: (52,5)\left( \frac { 5 } { 2 } , - 5 \right) ;Focus: (5,32)\left( - 5 , \frac { 3 } { 2 } \right) ;Directrix: y=32y = \frac { 3 } { 2 }
C)Vertex: (52,5)\left( \frac { 5 } { 2 } , - 5 \right) ;Focus: (5,72)\left( - 5 , \frac { 7 } { 2 } \right) ;Directrix: y=32y = \frac { 3 } { 2 }
D)Vertex: (5,52)\left( - 5 , \frac { 5 } { 2 } \right) ;Focus: (5,32)\left( - 5 , \frac { 3 } { 2 } \right) ;Directrix: y=72y = \frac { 7 } { 2 }
E)Vertex: (0,0)( 0,0 ) ;Focus: (5,72)\left( - 5 , \frac { 7 } { 2 } \right) ;Directrix: y=72y = \frac { 7 } { 2 }
سؤال
Find the vertex,focus,and directrix of the parabola.​ y=3x2y = - 3 x ^ { 2 }

A)Vertex: (0,0);Focus: (0,112)\left( 0 , - \frac { 1 } { 12 } \right) ;Directrix: y=112y = - \frac { 1 } { 12 }
B)Vertex:(0,0);Focus: (0,112)\left( 0 , - \frac { 1 } { 12 } \right) ;Directrix: y=112y = \frac { 1 } { 12 }
C)Vertex: (0,0);Focus: (0,13)\left( 0 , \frac { 1 } { 3 } \right) ;Directrix: y=13y = \frac { 1 } { 3 }
D)Vertex: (0,0);Focus: (0,112)\left( 0 , \frac { 1 } { 12 } \right) ;Directrix: y=112y = \frac { 1 } { 12 }
E)Vertex: (0,0);Focus: (0,13)\left( 0 , - \frac { 1 } { 3 } \right) ;Directrix: y=13y = \frac { 1 } { 3 }
سؤال
Find the vertex,focus,and directrix of the parabola.​ (x1)2+16(y+6)=0( x - 1 ) ^ { 2 } + 16 ( y + 6 ) = 0

A)Vertex: (0,4)( 0 , - 4 ) ;Focus: (1,6)( 1 , - 6 ) ;Directrix: y=0y = 0
B)Vertex: (1,10)( 1 , - 10 ) ;Focus: (1,10)( 1 , - 10 ) ;Directrix: y=0y = 0
C)Vertex: (4,1)( - 4,1 ) ;Focus: (4,1)( - 4,1 ) ;Directrix: y=0y = 0
D)Vertex: (1,6)( 1 , - 6 ) ;Focus: (1,10)( 1 , - 10 ) ;Directrix: y=0y = 0
E)Vertex: (1,6)( 1 , - 6 ) ;Focus: (1,4)( 1 , - 4 ) ;Directrix: y=6y = 6
سؤال
Find the standard form of the equation of the parabola with the given characteristics. ​
Vertex: (0,2)( 0,2 ) ;directrix: y=10y = 10

A) x2=32(y10)x ^ { 2 } = - 32 ( y - 10 )
B) y2=32(x2)y ^ { 2 } = - 32 ( x - 2 )
C) x2=32(y2)x ^ { 2 } = 32 ( y - 2 )
D) y2=32(x2)y ^ { 2 } = 32 ( x - 2 )
E) x2=32(y2)x ^ { 2 } = - 32 ( y - 2 )
سؤال
Find the vertex,focus,and directrix of the parabola.​ y2=10xy ^ { 2 } = 10 x

A)Vertex: (0,0);Focus: (104,0)\left( \frac { 10 } { 4 } , 0 \right) ;Directrix: x=104x = - \frac { 10 } { 4 }
B)Vertex: (0,0);Focus: (110,0)\left( \frac { 1 } { 10 } , 0 \right) ;Directrix: x=110x = \frac { 1 } { 10 }
C)Vertex: (0,0);Focus: (104,0)\left( - \frac { 10 } { 4 } , 0 \right) ;Directrix: x=104x = - \frac { 10 } { 4 }
D)Vertex: (0,0);Focus: (104,0)\left( - \frac { 10 } { 4 } , 0 \right) ;Directrix: x=104x = \frac { 10 } { 4 }
E)Vertex: (0,0);Focus: (110,0)\left( - \frac { 1 } { 10 } , 0 \right) ;Directrix: x=110x = \frac { 1 } { 10 }
سؤال
The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​
Parabola: x2+20y=0x ^ { 2 } + 20 y = 0 Tangent Line: x+y5=0x + y - 5 = 0

A)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
سؤال
Find the vertex,focus,and directrix of the parabola.​ (x+3)+(y1)2=0( x + 3 ) + ( y - 1 ) ^ { 2 } = 0

A)Vertex: (3,1)( - 3,1 ) ;Focus: (134,1)\left( \frac { - 13 } { 4 } , 1 \right) ;Directrix: x=114x = \frac { - 11 } { 4 }
B)Vertex: (1,3,)( 1 , - 3 , ) ;Focus: (1,114)\left( 1 , \frac { - 11 } { 4 } \right) ;Directrix: x=134x = \frac { - 13 } { 4 }
C)Vertex: (1,3,)( 1 , - 3 , ) ;Focus: (114,1)\left( \frac { - 11 } { 4 } , 1 \right) ;Directrix: x=134x = \frac { - 13 } { 4 }
D)Vertex: (3,1)( - 3,1 ) ;Focus: (1,134)\left( 1 , \frac { - 13 } { 4 } \right) ;Directrix: x=134x = \frac { - 13 } { 4 }
E)Vertex: (3,1)( - 3,1 ) ;Focus: (1,114)\left( 1 , \frac { - 11 } { 4 } \right) ;Directrix: x=134x = \frac { - 13 } { 4 }
سؤال
The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by (x112)2=45(R12544)( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 ) .Select the correct graph of the function. ​

A)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​   <div style=padding-top: 35px>  .
D)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​   <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the parabola with the given characteristics. ​
Vertex: (6,5)( 6,5 ) ;focus: (8,5)( 8,5 )

A) (y6)2=8(x5)( y - 6 ) ^ { 2 } = 8 ( x - 5 )
B) (y5)2=8(x6)( y - 5 ) ^ { 2 } = 8 ( x - 6 )
C) (x6)2=8(y5)( x - 6 ) ^ { 2 } = - 8 ( y - 5 )
D) (y6)2=8(x5)( y - 6 ) ^ { 2 } = - 8 ( x - 5 )
E) (x5)2=8(y6)( x - 5 ) ^ { 2 } = 8 ( y - 6 )
سؤال
The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by (x116)2=45(R16,820)( x - 116 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 16,820 ) .Approximate the number of sales that will maximize revenue. ​

A) R=116x54x2R = 116 x - \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=116x = 116 units.
B) R=116x+54x2R = 116 x + \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=16,820x = 16,820 units.
C) R=290x+54x2R = 290 x + \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=16,820x = 16,820 units.
D) R=290x54x2R = 290 x - \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=116x = 116 units.
E) R=290x+54x2R = 290 x + \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=290x = 290 units.
سؤال
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Horizontal axis and passes through the point (4,7)( - 4,7 )

A) x2=449yx ^ { 2 } = \frac { - 4 } { 49 } y
B) y2=449xy ^ { 2 } = \frac { - 4 } { 49 } x
C) y2=494xy ^ { 2 } = \frac { 49 } { - 4 } x
D) x2=494yx ^ { 2 } = \frac { 49 } { - 4 } y
E) y2=xy ^ { 2 } = x
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/124
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 60: Introduction to Conics Parabolas
1
Find the vertex and focus of the parabola from the given equation and select its graph.​ y=16x2y = \frac { 1 } { 6 } x ^ { 2 }

A)Vertex: (0,0) Focus: (0,-1.5)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)
B)Vertex: (0,0) Focus: (-1.5,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)
C)Vertex: (0,0) Focus: (0,1.5)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)
D)Vertex: (0,0) Focus: (0,1.5)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)
E)Vertex: (0,0) Focus: (0,-1.5)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y = \frac { 1 } { 6 } x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,-1.5)   ​ B)Vertex: (0,0) Focus: (-1.5,0)   C)Vertex: (0,0) Focus: (0,1.5)   D)Vertex: (0,0) Focus: (0,1.5)   E)Vertex: (0,0) Focus: (0,-1.5)
Vertex: (0,0) Focus: (0,1.5) Vertex: (0,0) Focus: (0,1.5)
2
Find the vertex and focus of the parabola from the given equation and select its graph.​ x2+16y=0x ^ { 2 } + 16 y = 0

A)Vertex: (0,0) Focus: (4,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)
B)Vertex: (0,0) Focus: (-4,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)
C)Vertex: (0,-4) Focus: (0,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)
D)Vertex: (0,0) Focus: (0,4)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)
E)Vertex: (0,0) Focus: (0,-4)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  x ^ { 2 } + 16 y = 0  ​</strong> A)Vertex: (0,0) Focus: (4,0)   B)Vertex: (0,0) Focus: (-4,0)   C)Vertex: (0,-4) Focus: (0,0)   D)Vertex: (0,0) Focus: (0,4)   E)Vertex: (0,0) Focus: (0,-4)
Vertex: (0,0) Focus: (0,-4) Vertex: (0,0) Focus: (0,-4)
3
Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​ x236+y29=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1

A)Center: (0,0) Vertices: (-6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​
B)Center: (0,0) Vertices: (±6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​
C)Center: (0,0) Vertices: (-6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​
D)Center: (0,0) Vertices: (±6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​
E)Center: (0,0) Vertices: (6,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (-6,0) ​   B)Center: (0,0) Vertices: (±6,0) ​   C)Center: (0,0) Vertices: (-6,0) ​   D)Center: (0,0) Vertices: (±6,0) ​   E)Center: (0,0) Vertices: (6,0) ​
Center: (0,0) Vertices: (±6,0)
Center: (0,0) Vertices: (±6,0) ​
4
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Directrix: y = 2

A) x2=8yx ^ { 2 } = - 8 y
B) x2=8yx ^ { 2 } = 8 y
C) y2=8xy ^ { 2 } = - 8 x
D) y2=8xy ^ { 2 } = 8 x
E) x2=y8x ^ { 2 } = - \frac { y } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
5
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Directrix: x = 3

A) x2=12yx ^ { 2 } = - 12 y
B) y2=12xy ^ { 2 } = 12 x
C) y2=x12y ^ { 2 } = \frac { x } { 12 }
D) x2=12yx ^ { 2 } = 12 y
E) y2=12xy ^ { 2 } = - 12 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find the vertex and focus of the parabola from the given equation and select its graph.​ 2x+y2=02 x + y ^ { 2 } = 0

A)Vertex: (0,0) Focus: (- 12\frac { 1 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)
B)Vertex: (- 12\frac { 1 } { 2 } ,0) Focus: (0,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)
C)Vertex: (0,0) Focus: (0, 12\frac { 1 } { 2 } )  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)
D)Vertex: (0,0) Focus: (0,- 12\frac { 1 } { 2 } )  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)
E)Vertex: (0,0) Focus: ( 12\frac { 1 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 1 } { 2 }  ,0)   B)Vertex: (-  \frac { 1 } { 2 }  ,0) Focus: (0,0)   C)Vertex: (0,0) Focus: (0,  \frac { 1 } { 2 }  )   D)Vertex: (0,0) Focus: (0,-  \frac { 1 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 1 } { 2 }  ,0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Passes through the point (2,4);horizontal axis

A) x2=8yx ^ { 2 } = 8 y
B) x2=8yx ^ { 2 } = - 8 y
C) y2=8xy ^ { 2 } = 8 x
D) y2=8xy ^ { 2 } = - 8 x
E) y2=x8y ^ { 2 } = \frac { x } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find the vertex and focus of the parabola for the given equation and select its graph.​ y=3x2y = - 3 x ^ { 2 }

A)Vertex: (0,0) Focus: (0,3)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)
B)Vertex: (0,0) Focus: (0,-12)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)
C)Vertex: (0,0) Focus: (0,-3)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)
D)Vertex: (0,0) Focus: (0,112)\left( 0 , - \frac { 1 } { 12 } \right)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)
E)Vertex: (0,0) Focus: (0,13)\left( 0 , \frac { 1 } { 3 } \right)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​</strong> A)Vertex: (0,0) Focus: (0,3)   B)Vertex: (0,0) Focus: (0,-12)   C)Vertex: (0,0) Focus: (0,-3)   D)Vertex: (0,0) Focus:  \left( 0 , - \frac { 1 } { 12 } \right)    E)Vertex: (0,0) Focus:  \left( 0 , \frac { 1 } { 3 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Focus: (0, 12\frac { 1 } { 2 } )

A) y2=2xy ^ { 2 } = - 2 x
B) x2=2yx ^ { 2 } = - 2 y
C) y2=2xy ^ { 2 } = 2 x
D) x2=2yx ^ { 2 } = 2 y
E) x2=y2x ^ { 2 } = \frac { y } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​ x29+y21/9=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1

A)Center: (0,0) Vertices: (±3,0)  <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​
B)Center: (0,0) Vertices: (-3,0)  <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​
C)Center: (0,0) Vertices: (3,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​
D)Center: (0,0) Vertices: (±3,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​
E)Center: (0,0) Vertices: (-3,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 1 / 9 } = 1  ​</strong> A)Center: (0,0) Vertices: (±3,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0) ​   D)Center: (0,0) Vertices: (±3,0) ​   E)Center: (0,0) Vertices: (-3,0) ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
11
Select the standard form of the equation of the parabola and determine the coordinates of the focus.​  <strong>Select the standard form of the equation of the parabola and determine the coordinates of the focus.​   ​</strong> A)  x ^ { 2 } = \frac { 5 } { 2 } y  ;Focus:  \left( 0 , \frac { 5 } { 8 } \right)  B)  y ^ { 2 } = - \frac { 5 } { 2 } x  ;Focus:  \left( - \frac { 5 } { 8 } , 0 \right)  C)  x ^ { 2 } = - \frac { 5 } { 2 } y  ;Focus:  \left( 0 , - \frac { 5 } { 8 } \right)  D)  y ^ { 2 } = \frac { 5 } { 2 } x  ;Focus:  \left( \frac { 5 } { 8 } , 0 \right)  E)  y ^ { 2 } = \frac { 5 } { 2 } x  ;Focus:  ( 5,0 )

A) x2=52yx ^ { 2 } = \frac { 5 } { 2 } y ;Focus: (0,58)\left( 0 , \frac { 5 } { 8 } \right)
B) y2=52xy ^ { 2 } = - \frac { 5 } { 2 } x ;Focus: (58,0)\left( - \frac { 5 } { 8 } , 0 \right)
C) x2=52yx ^ { 2 } = - \frac { 5 } { 2 } y ;Focus: (0,58)\left( 0 , - \frac { 5 } { 8 } \right)
D) y2=52xy ^ { 2 } = \frac { 5 } { 2 } x ;Focus: (58,0)\left( \frac { 5 } { 8 } , 0 \right)
E) y2=52xy ^ { 2 } = \frac { 5 } { 2 } x ;Focus: (5,0)( 5,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Focus: (72,0)\left( - \frac { 7 } { 2 } , 0 \right)

A) x2=14yx ^ { 2 } = 14 y
B) y2=14xy ^ { 2 } = - 14 x
C) y2=14xy ^ { 2 } = 14 x
D) x2=14yx ^ { 2 } = - 14 y
E) y2=x14y ^ { 2 } = - \frac { x } { 14 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
13
Find the vertex and focus of the parabola from the given equation and select its graph.​ y2=6xy ^ { 2 } = 6 x

A)Vertex: (0,0) Focus: (- 32\frac { 3 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)
B)Vertex: (0,0) Focus: (0,- 32\frac { 3 } { 2 } )  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)
C)Vertex: (0,0) Focus: ( 32\frac { 3 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)
D)Vertex: (0,0) Focus: (0, 32\frac { 3 } { 2 } )  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)
E)Vertex: (0,0) Focus: ( 32\frac { 3 } { 2 } ,0)  <strong>Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​</strong> A)Vertex: (0,0) Focus: (-  \frac { 3 } { 2 }  ,0)   B)Vertex: (0,0) Focus: (0,-  \frac { 3 } { 2 }  )   C)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)   D)Vertex: (0,0) Focus: (0,  \frac { 3 } { 2 }  )   E)Vertex: (0,0) Focus: (  \frac { 3 } { 2 }  ,0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Passes through the point (5,13)\left( - 5 , \frac { 1 } { 3 } \right) ;vertical axis

A) x2=75yx ^ { 2 } = 75 y
B) x2=75yx ^ { 2 } = - 75 y
C) y2=75xy ^ { 2 } = - 75 x
D) y2=75xy ^ { 2 } = 75 x
E) x2=y75x ^ { 2 } = \frac { y } { 75 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Directrix: x = -4

A) y2=16xy ^ { 2 } = - 16 x
B) y2=16xy ^ { 2 } = 16 x
C) x2=16yx ^ { 2 } = - 16 y
D) x2=16yx ^ { 2 } = 16 y
E) y2=x16y ^ { 2 } = \frac { x } { 16 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Focus: (0,-2)

A) y2=8xy ^ { 2 } = 8 x
B) x2=8yx ^ { 2 } = - 8 y
C) y2=8xy ^ { 2 } = - 8 x
D) x2=8yx ^ { 2 } = 8 y
E) x2=y8x ^ { 2 } = - \frac { y } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the vertex and focus of the parabola for the given equation and select its graph.​ y2=4xy ^ { 2 } = - 4 x

A)Vertex: (0,0) Focus: (1,0)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)
B)Vertex: (0,0) Focus: (1,0)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)
C)Vertex: (0,0) Focus: (-1,0)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)
D)Vertex: (0,0) Focus: ( - 1,0)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)
E)Vertex: (0,0) Focus: (0,1)  <strong>Find the vertex and focus of the parabola for the given equation and select its graph.​  y ^ { 2 } = - 4 x  ​</strong> A)Vertex: (0,0) Focus: (1,0)   B)Vertex: (0,0) Focus: (1,0)   C)Vertex: (0,0) Focus: (-1,0)   D)Vertex: (0,0) Focus: ( - 1,0)   E)Vertex: (0,0) Focus: (0,1)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​ x2100+y249=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1

A)Center: (0,0) Vertices: (±10,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​
B)Center: (0,0) Vertices: (10,0)  <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​
C)Center: (0,0) Vertices: (-10,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​
D)Center: (0,0) Vertices: (-10,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​
E)Center: (0,0) Vertices: (±10,0)
 <strong>Find the center and vertices which located on the major axis of the ellipse from given equation and select its graph.​  \frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 49 } = 1  ​</strong> A)Center: (0,0) Vertices: (±10,0) ​   B)Center: (0,0) Vertices: (10,0)   C)Center: (0,0) Vertices: (-10,0) ​   D)Center: (0,0) Vertices: (-10,0) ​   E)Center: (0,0) Vertices: (±10,0) ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
19
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Focus: (-4,0)

A) y2=16xy ^ { 2 } = - 16 x
B) y2=16xy ^ { 2 } = 16 x
C) x2=16yx ^ { 2 } = - 16 y
D) x2=16yx ^ { 2 } = - 16 y
E) y2=x16y ^ { 2 } = - \frac { x } { 16 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the standard form of the equation of the parabola with the given characteristic(s)and vertex at the origin. ​
Directrix: y = -1

A) y2=4xy ^ { 2 } = 4 x
B) x2=y4x ^ { 2 } = - \frac { y } { 4 }
C) x2=4yx ^ { 2 } = 4 y
D) y2=4xy ^ { 2 } = - 4 x
E) x2=4yx ^ { 2 } = - 4 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
21
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. focus: (0,-1)

A)y2 = -4x
B)x2 = -4y
C)x2 = y
D)y2 = -x
E)x2 = -y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
22
Identify the conic.​ 4y2+5x220=04 y ^ { 2 } + 5 x ^ { 2 } - 20 = 0

A)Ellipse
B)Circle
C)Parabola
D)Line
E)Hyperbola
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
23
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. directrix: x = -5

A)y2 = 20x
B)y2 = -5x
C)x2 = -20y
D)x2 = -5y
E)x2 = 20y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
24
Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​
Vertices: (±3,0);passes through the point ​ (5,3)( 5 , \sqrt { 3 } )

A) y29x227/16=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 27 / 16 } = - 1
B) x227/16+y29=1\frac { x ^ { 2 } } { 27 / 16 } + \frac { y ^ { 2 } } { 9 } = 1
C) x29y227/16=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 27 / 16 } = 1
D) x227/16+y29=1\frac { x ^ { 2 } } { 27 / 16 } + \frac { y ^ { 2 } } { 9 } = - 1
E) y29+x227/16=1\frac { y ^ { 2 } } { 9 } + \frac { x ^ { 2 } } { 27 / 16 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
25
Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​ 4y225x2=1004 y ^ { 2 } - 25 x ^ { 2 } = 100

A)Centre: (0,0) Vertices: (0,-5)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)
B)Centre: (0,0) Vertices: (±5,0)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)
C)Centre: (0,0) Vertices: (0,±5)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)
D)Centre: (0,0) Vertices: (0,5)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)
E)Centre: (0,0) Vertices: (5,0)  <strong>Find the center and vertices of the hyperbola and select its graph,using asymptotes as sketching aids.​  4 y ^ { 2 } - 25 x ^ { 2 } = 100  ​</strong> A)Centre: (0,0) Vertices: (0,-5)   B)Centre: (0,0) Vertices: (±5,0)   C)Centre: (0,0) Vertices: (0,±5)   D)Centre: (0,0) Vertices: (0,5)   E)Centre: (0,0) Vertices: (5,0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​ x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1

A)Center: (0,0) Vertices: (-5,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)
B)Center: (0,0) Vertices: (-3,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)
C)Center: (0,0) Vertices: (3,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)
D)Center: (0,0) Vertices: (±5,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)
E)Center: (0,0) Vertices: (±3,0)  <strong>Find the center and vertices of the hyperbola and sketch its graph,using asymptotes as sketching aids.​  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  ​</strong> A)Center: (0,0) Vertices: (-5,0)   B)Center: (0,0) Vertices: (-3,0)   C)Center: (0,0) Vertices: (3,0)   D)Center: (0,0) Vertices: (±5,0)   E)Center: (0,0) Vertices: (±3,0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
27
Select the standard form of the equation of the parabola and determine the coordinates of the focus. ​​  <strong>Select the standard form of the equation of the parabola and determine the coordinates of the focus. ​​   ​</strong> A)  y ^ { 2 } = - \frac { 49 } { 5 } x  ;Focus:  \left( \frac { 49 } { 20 } , 0 \right)  B)  y ^ { 2 } = \frac { 49 } { 5 } x  ;Focus:  \left( \frac { 49 } { 20 } , 0 \right)  C)  y ^ { 2 } = - \frac { 49 } { 5 } x  ;Focus:  \left( - \frac { 49 } { 20 } , 0 \right)  D)  x ^ { 2 } = - \frac { 49 } { 5 } y  Focus:  \left( \frac { 49 } { 20 } , 0 \right)  E)  x ^ { 2 } = \frac { 49 } { 5 } y  ;Focus:  \left( \frac { 49 } { 20 } , 0 \right)

A) y2=495xy ^ { 2 } = - \frac { 49 } { 5 } x ;Focus: (4920,0)\left( \frac { 49 } { 20 } , 0 \right)
B) y2=495xy ^ { 2 } = \frac { 49 } { 5 } x ;Focus: (4920,0)\left( \frac { 49 } { 20 } , 0 \right)
C) y2=495xy ^ { 2 } = - \frac { 49 } { 5 } x ;Focus: (4920,0)\left( - \frac { 49 } { 20 } , 0 \right)
D) x2=495yx ^ { 2 } = - \frac { 49 } { 5 } y Focus: (4920,0)\left( \frac { 49 } { 20 } , 0 \right)
E) x2=495yx ^ { 2 } = \frac { 49 } { 5 } y ;Focus: (4920,0)\left( \frac { 49 } { 20 } , 0 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
28
Find the vertex and focus of the parabola. x2+8y=0x ^ { 2 } + 8 y = 0

A)vertex: (0,0)focus: (0,-2)
B)vertex: (2,0)focus: (0,0)
C)vertex: (0,0)focus: (-2,0)
D)vertex: (0,0)focus: (0,2)
E)vertex: (-2,0)focus: (0,0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​
Vertices: (0,±3);focies: (0,±7)
​ ​

A) y29x240=1- \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 40 } = 1
B) y240x29=1\frac { y ^ { 2 } } { 40 } - \frac { x ^ { 2 } } { 9 } = 1
C) y29+x240=1\frac { y ^ { 2 } } { 9 } + \frac { x ^ { 2 } } { 40 } = 1
D) y240x29=1\frac { y ^ { 2 } } { 40 } - \frac { x ^ { 2 } } { 9 } = - 1
E) y29x240=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 40 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
30
A solar oven uses a parabolic reflector to focus the sun's rays at a point 5 inches from the vertex of the reflector (see figure).Write an equation for a cross section of the oven's reflector with its focus on the positive y axis and its vertex at the origin.  <strong>A solar oven uses a parabolic reflector to focus the sun's rays at a point 5 inches from the vertex of the reflector (see figure).Write an equation for a cross section of the oven's reflector with its focus on the positive y axis and its vertex at the origin.   L = 5 inches</strong> A)  y = 5 x ^ { 2 }  B)  x ^ { 2 } = 5 y  C)  y = 20 x ^ { 2 }  D)  x ^ { 2 } = 20 y  E)​  y = \frac { 1 } { 5 } x ^ { 2 }   L = 5 inches

A) y=5x2y = 5 x ^ { 2 }
B) x2=5yx ^ { 2 } = 5 y
C) y=20x2y = 20 x ^ { 2 }
D) x2=20yx ^ { 2 } = 20 y
E)​ y=15x2y = \frac { 1 } { 5 } x ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the vertex and focus of the parabola. y2=92xy ^ { 2 } = - \frac { 9 } { 2 } x

A)vertex: (0,0)focus: (98,0)\left( - \frac { 9 } { 8 } , 0 \right)
B)vertex: (0,54)\left( 0 , - \frac { 5 } { 4 } \right) focus: (92,92)\left( - \frac { 9 } { 2 } , - \frac { 9 } { 2 } \right)
C)vertex: (0,0)focus: (0,92)\left( 0 , - \frac { 9 } { 2 } \right)
D)vertex: (0,54)\left( 0 , - \frac { 5 } { 4 } \right) focus: (0,98)\left( 0 , - \frac { 9 } { 8 } \right)
E)vertex: (0,0)focus: (92,0)\left( - \frac { 9 } { 2 } , 0 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the standard form of the equation of the ellipse with the given characteristics and center at the origin. ​
Focies: (±7,0);major axis of length 16

A) x264+y215=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 15 } = 1
B) x264y215=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 15 } = 1
C) x215+y264=1- \frac { x ^ { 2 } } { 15 } + \frac { y ^ { 2 } } { 64 } = 1
D) x264+y215=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 15 } = - 1
E) x215+y264=1\frac { x ^ { 2 } } { 15 } + \frac { y ^ { 2 } } { 64 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
33
A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​

A)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​
B)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​
C)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​
D)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​
E)​ <strong>A semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 20 feet and a height at the center of 4 feet.Select the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin.Identify the coordinates of the known points. ​</strong> A)​   B)​   C)​   D)​   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
34
Identify the conic.​ 4y28x=04 y ^ { 2 } - 8 x = 0

A)Circle
B)Ellipse
C)Parabola
D)Hyperbola
E)Line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the standard form of the equation of the parabola and determine the coordinates of the focus.  <strong>Find the standard form of the equation of the parabola and determine the coordinates of the focus.  </strong> A)  x ^ { 2 } = - 4 y  ,focus:  \left( 0 , - \frac { 1 } { 4 } \right)  B)  x ^ { 2 } = - \frac { 1 } { 16 } y  ,focus:  \left( 0 , - \frac { 1 } { 16 } \right)  C)  x ^ { 2 } = - \frac { 1 } { 4 } y  ,focus:  \left( 0 , - \frac { 1 } { 16 } \right)  D)  x ^ { 2 } = - 4 y  ,focus: (0,-4) E)  x ^ { 2 } = - \frac { 1 } { 4 } y  ,focus:  \left( 0 , - \frac { 1 } { 4 } \right)

A) x2=4yx ^ { 2 } = - 4 y ,focus: (0,14)\left( 0 , - \frac { 1 } { 4 } \right)
B) x2=116yx ^ { 2 } = - \frac { 1 } { 16 } y ,focus: (0,116)\left( 0 , - \frac { 1 } { 16 } \right)
C) x2=14yx ^ { 2 } = - \frac { 1 } { 4 } y ,focus: (0,116)\left( 0 , - \frac { 1 } { 16 } \right)
D) x2=4yx ^ { 2 } = - 4 y ,focus: (0,-4)
E) x2=14yx ^ { 2 } = - \frac { 1 } { 4 } y ,focus: (0,14)\left( 0 , - \frac { 1 } { 4 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
36
Identify the conic.​ 4y23x2+12=04 y ^ { 2 } - 3 x ^ { 2 } + 12 = 0

A)Circle
B)Ellipse
C)Hyperbola
D)Parabola
E)Line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​
Vertices: (0,±5);focies: (0,±6)

A) y225x211=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 11 } = - 1
B) y225+x211=1\frac { y ^ { 2 } } { 25 } + \frac { x ^ { 2 } } { 11 } = 1
C) y225x211=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 11 } = 1
D) y225+x211=1\frac { y ^ { 2 } } { 25 } + \frac { x ^ { 2 } } { 11 } = - 1
E) y225+x211=1- \frac { y ^ { 2 } } { 25 } + \frac { x ^ { 2 } } { 11 } = - 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
38
Match the equation with its graph. x2+4y2=4x ^ { 2 } + 4 y ^ { 2 } = 4

A)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​
B)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​
C)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​
D)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​
E)  <strong>Match the equation with its graph.  x ^ { 2 } + 4 y ^ { 2 } = 4 </strong> A)   B)   C)   ​ D)   E)   ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the standard form of the equation of the ellipse with the given characteristics and center at the origin. ​
Vertices: (0,±7);focies: (0,±4)

A) x249+y233=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = 1
B) x233+y249=1\frac { x ^ { 2 } } { 33 } + \frac { y ^ { 2 } } { 49 } = 1
C) x249+y233=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = - 1
D) x249+y233=1- \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = 1
E) x233+y249=1\frac { x ^ { 2 } } { 33 } + \frac { y ^ { 2 } } { 49 } = - 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​
Vertices: (0,±2);asymptotes: y = ± 32\frac { 3 } { 2 } x

A) y29+x24=1\frac { y ^ { 2 } } { 9 } + \frac { x ^ { 2 } } { 4 } = 1
B) y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
C) y29x24=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = - 1
D) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1
E) y29x24=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find the standard form of the equation of the hyperbola with the given characteristics. focies: (±4,0),asymptotes: y=±5xy = \pm 5 x

A) x2126y2126=1\frac { x ^ { 2 } } { \frac { 1 } { 26 } } - \frac { y ^ { 2 } } { \frac { 1 } { 26 } } = 1
B) x2813y220013=1\frac { x ^ { 2 } } { \frac { 8 } { 13 } } - \frac { y ^ { 2 } } { \frac { 200 } { 13 } } = 1
C) y225x216=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1
D) x216y2400=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 400 } = 1
E) x220013y2813=1\frac { x ^ { 2 } } { \frac { 200 } { 13 } } - \frac { y ^ { 2 } } { \frac { 8 } { 13 } } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
42
Find the standard form of the equation of the hyperbola with the given characteristics. vertices: (0,±4)focies: (0,±5)

A) x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
B) x216y225=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1
C) y216x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1
D) y216x29=25\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 25
E) y216x225=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find the standard form of the equation of the ellipse with the following graph.  <strong>Find the standard form of the equation of the ellipse with the following graph.  </strong> A)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 0  ,  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 0  ,  x ^ { 2 } + \frac { y ^ { 2 } } { 16 } = 0  B)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 100  ,  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1  ,  x ^ { 2 } - \frac { y ^ { 2 } } { 16 } = 1  C)  25 x ^ { 2 } + 4 y ^ { 2 } = 1  ,  \frac { x ^ { 2 } } { 2 } - \frac { y ^ { 2 } } { 36 } = 1  ,  \frac { x ^ { 2 } } { 16 } - y ^ { 2 } = 1  D)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1  ,  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  ,  x ^ { 2 } + \frac { y ^ { 2 } } { 16 } = 1  E)  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1  ,  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1  ,  \frac { x ^ { 2 } } { 16 } + y ^ { 2 } = 1

A) x24+y225=0\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 0 , x236+y24=0\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 0 , x2+y216=0x ^ { 2 } + \frac { y ^ { 2 } } { 16 } = 0
B) x24+y225=100\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 100 , x236y24=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1 , x2y216=1x ^ { 2 } - \frac { y ^ { 2 } } { 16 } = 1
C) 25x2+4y2=125 x ^ { 2 } + 4 y ^ { 2 } = 1 , x22y236=1\frac { x ^ { 2 } } { 2 } - \frac { y ^ { 2 } } { 36 } = 1 , x216y2=1\frac { x ^ { 2 } } { 16 } - y ^ { 2 } = 1
D) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 , x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1 , x2+y216=1x ^ { 2 } + \frac { y ^ { 2 } } { 16 } = 1
E) x225+y24=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 , x24+y236=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1 , x216+y2=1\frac { x ^ { 2 } } { 16 } + y ^ { 2 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
44
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. Focus: (0,12)\left( 0 , \frac { 1 } { 2 } \right)

A) x2=24yx ^ { 2 } = \frac { 2 } { 4 } y
B) y2=24xy ^ { 2 } = \frac { 2 } { 4 } x
C) y2=42xy ^ { 2 } = \frac { 4 } { 2 } x
D) x2=42yx ^ { 2 } = \frac { 4 } { 2 } y
E) y2=xy ^ { 2 } = x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Vertical axis and passes through the point (6,8)

A) x2=368yx ^ { 2 } = \frac { 36 } { 8 } y
B) y2=836xy ^ { 2 } = \frac { 8 } { 36 } x
C) x2=836yx ^ { 2 } = \frac { 8 } { 36 } y
D) y2=xy ^ { 2 } = x
E)​ y2=368xy ^ { 2 } = \frac { 36 } { 8 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
46
Write an equation for a cross section of the parabolic ear (used to hear sounds from a distance)shown in the picture.  <strong>Write an equation for a cross section of the parabolic ear (used to hear sounds from a distance)shown in the picture.   ​ d = 2.25 inches</strong> A)  x ^ { 2 } = 9 y  B)​  y ^ { 2 } = \frac { 1 } { 9 } x  C)​  x ^ { 2 } = 2.25 y  D)​  y ^ { 2 } = 2.25 x  E)  y ^ { 2 } = 9 x   ​ d = 2.25 inches

A) x2=9yx ^ { 2 } = 9 y
B)​ y2=19xy ^ { 2 } = \frac { 1 } { 9 } x
C)​ x2=2.25yx ^ { 2 } = 2.25 y
D)​ y2=2.25xy ^ { 2 } = 2.25 x
E) y2=9xy ^ { 2 } = 9 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find the center and the vertices which located on the major axis of the ellipse. 81x2+y2=8181 x ^ { 2 } + y ^ { 2 } = 81

A)center: (0,0)vertices: (-9,0), (9,0)
B)center: (0,0)vertices: (0,-9), (0,9)
C)center: (-9,9)vertices: (-1,0), (1,0)
D)center: (0,0)vertices: (-9,-1), (9,1)
E)center: (-9,9)vertices: (-1,-9), (1,9)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
48
Select the graph of the following equation.​ x2=8yx ^ { 2 } = 8 y

A)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the following equation.​  x ^ { 2 } = 8 y  ​</strong> A)​   B)​   C)​   D)​   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. Focus: (0,4)( 0 , - 4 )

A) x2=16yx ^ { 2 } = 16 y
B) y2=xy ^ { 2 } = x
C) y2=16xy ^ { 2 } = 16 x
D) x2=16yx ^ { 2 } = - 16 y
E) y2=16xy ^ { 2 } = - 16 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
50
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. Focus: (3,0)( - 3,0 )

A) x2=yx ^ { 2 } = y
B) y2=12xy ^ { 2 } = 12 x
C) y2=12xy ^ { 2 } = - 12 x
D) x2=12yx ^ { 2 } = 12 y
E) x2=12yx ^ { 2 } = - 12 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find the standard form of the equation of the ellipse with the following characteristics. focies: (±8,0)major axis of length: 22

A) x2484+y264=1\frac { x ^ { 2 } } { 484 } + \frac { y ^ { 2 } } { 64 } = 1
B)​ x2121+y264=1\frac { x ^ { 2 } } { 121 } + \frac { y ^ { 2 } } { 64 } = 1
C) x2121+y257=1\frac { x ^ { 2 } } { 121 } + \frac { y ^ { 2 } } { 57 } = 1
D) x2484+y2420=1\frac { x ^ { 2 } } { 484 } + \frac { y ^ { 2 } } { 420 } = 1
E) x264+y2121=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 121 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Directrix: y=3y = 3

A) y2=12xy ^ { 2 } = - 12 x
B) y2=xy ^ { 2 } = x
C) y2=12xy ^ { 2 } = 12 x
D) x2=12yx ^ { 2 } = 12 y
E) x2=12yx ^ { 2 } = - 12 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
53
Sketch the graph of the ellipse,using the lateral recta.​ x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1

A)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
54
Select the graph of the following equation: ​​ y2=2xy ^ { 2 } = - 2 x

A)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the following equation: ​​  y ^ { 2 } = - 2 x </strong> A)​   B)​   C)​   D)​   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
55
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Directrix: x=6x = - 6

A) y2=24xy ^ { 2 } = 24 x
B) y2=xy ^ { 2 } = x
C) y2=24xy ^ { 2 } = - 24 x
D) x2=24yx ^ { 2 } = 24 y
E) x2=24yx ^ { 2 } = - 24 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Vertical axis and passes through the point (-8,-8)

A) y2=8xy ^ { 2 } = - 8 x
B) y2=xy ^ { 2 } = x
C) x2=8yx ^ { 2 } = - 8 y
D) x2=8yx ^ { 2 } = 8 y
E) y2=8xy ^ { 2 } = 8 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find the vertices and asymptotes of the hyperbola. 25y24x2=10025 y ^ { 2 } - 4 x ^ { 2 } = 100

A)vertices: (±2,0),asymptote: y=±52xy = \pm \frac { 5 } { 2 } x
B)vertices: (0,±2),asymptote: y=±25xy = \pm \frac { 2 } { 5 } x
C)vertices: (±2,0),asymptote: y=±25xy = \pm \frac { 2 } { 5 } x
D)vertices: (0,±2),asymptote: y=±52xy = \pm \frac { 5 } { 2 } x
E)vertices: (±2,5),asymptote: y=±25xy = \pm \frac { 2 } { 5 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
58
Find the center and vertices which located on the major axis of the ellipse. x225+y29=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1

A)center: (0,0)vertices: (0,-5), (0,5)
B)center: (0,0)vertices: (-3,0), (3,0)
C)center: (5,3)vertices: (-5,-3), (5,3)
D)center: (0,0)vertices: (-5,0), (5,0)
E)center: (5,0)vertices: (0,-3), (0,3)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
59
Sketch the graph of the ellipse,using the lateral recta.​ 16x2+4y2=6416 x ^ { 2 } + 4 y ^ { 2 } = 64

A)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Sketch the graph of the ellipse,using the lateral recta.​  16 x ^ { 2 } + 4 y ^ { 2 } = 64  ​</strong> A)​   B)​   C)​   D)​   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
60
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. Focus: (72,0)\left( - \frac { 7 } { 2 } , 0 \right)

A) y2=282xy ^ { 2 } = - \frac { 28 } { 2 } x
B) x2=228yx ^ { 2 } = \frac { 2 } { 28 } y
C) y2=228xy ^ { 2 } = - \frac { 2 } { 28 } x
D) x2=228yx ^ { 2 } = - \frac { 2 } { 28 } y
E) y2=228xy ^ { 2 } = \frac { 2 } { 28 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the standard form of the equation of the parabola with the given characteristics. ​
Vertex: (1,2)( 1,2 ) ;directrix: y=2y = - 2

A) (y1)2=2(x2)( y - 1 ) ^ { 2 } = 2 ( x - 2 )
B) (x1)2=16(y2)( x - 1 ) ^ { 2 } = - 16 ( y - 2 )
C) (y1)2=16(x2)( y - 1 ) ^ { 2 } = - 16 ( x - 2 )
D) (x1)2=2(y2)( x - 1 ) ^ { 2 } = 2 ( y - 2 )
E) (x1)2=16(y2)( x - 1 ) ^ { 2 } = 16 ( y - 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
62
Find the standard form of the equation of the parabola with the given characteristics. ​
Vertex: (5,5)( - 5,5 ) ;focus: (5,0)( - 5,0 )

A) (x5)2=20(y5)( x - 5 ) ^ { 2 } = 20 ( y - 5 )
B) (x5)2=20(y5)( x - 5 ) ^ { 2 } = - 20 ( y - 5 )
C) (y5)2=20(x5)( y - 5 ) ^ { 2 } = - 20 ( x - 5 )
D) (y5)2=20(x5)( y - 5 ) ^ { 2 } = 20 ( x - 5 )
E) (x+5)2=20(y5)( x + 5 ) ^ { 2 } = - 20 ( y - 5 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
63
Find the vertex,focus,and directrix of the parabola.​ (x+72)2=4(y1)\left( x + \frac { 7 } { 2 } \right) ^ { 2 } = 4 ( y - 1 )

A)Vertex: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Focus: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Directrix: y=0y = 0
B)Vertex: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Focus: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Directrix: y=1y = 1
C)Vertex: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Focus: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Directrix: y=0y = 0
D)Vertex: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Focus: (72,2)\left( - \frac { 7 } { 2 } , 2 \right) ;Directrix: y=1y = 1
E)Vertex: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Focus: (72,1)\left( - \frac { 7 } { 2 } , 1 \right) ;Directrix: y=1y = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
64
The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​
Parabola: y224x=0y ^ { 2 } - 24 x = 0 Tangent Line: xy+6=0x - y + 6 = 0

A)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  y ^ { 2 } - 24 x = 0  Tangent Line:  x - y + 6 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the equation of the parabola so that its graph matches the description.​ (y5)2=2(x+1)( y - 5 ) ^ { 2 } = 2 ( x + 1 ) ;upper half of parabola ​

A) x=2(y+1)+5x = \sqrt { 2 ( y + 1 ) } + 5
B) x=2(y+1)+5x = - \sqrt { 2 ( y + 1 ) } + 5
C) y=2(x1)+5y = \sqrt { 2 ( x - 1 ) } + 5
D) y=2(x+1)+5y = \sqrt { 2 ( x + 1 ) } + 5
E) y=2(x+1)+5y = - \sqrt { 2 ( x + 1 ) } + 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
66
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Horizontal axis and passes through the point (3,2)( 3 , - 2 )

A) y2=xy ^ { 2 } = x
B) y2=43xy ^ { 2 } = \frac { 4 } { 3 } x
C) y2=34xy ^ { 2 } = \frac { 3 } { 4 } x
D) x2=43yx ^ { 2 } = \frac { 4 } { 3 } y
E) x2=34yx ^ { 2 } = \frac { 3 } { 4 } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find the vertex,focus,and directrix of the parabola.​ y2=3xy ^ { 2 } = - 3 x

A)Vertex: (0,0);Focus: (34,0)\left( - \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = - \frac { 3 } { 4 }
B)Vertex: (0,0);Focus: (13,0)\left( - \frac { 1 } { 3 } , 0 \right) ;Directrix: x=13x = \frac { 1 } { 3 }
C)Vertex: (0,0);Focus: (13,0)\left( \frac { 1 } { 3 } , 0 \right) ;Directrix: x=13x = \frac { 1 } { 3 }
D)Vertex: (0,0);Focus: (34,0)\left( \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = - \frac { 3 } { 4 }
E)Vertex: (0,0);Focus: (34,0)\left( - \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = \frac { 3 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find the equation of the parabola so that its graph matches the description.​ (y+2)2=3(x7)( y + 2 ) ^ { 2 } = 3 ( x - 7 ) ;lower half of parabola ​

A) y=2+3(x7)y = - 2 + \sqrt { 3 ( x - 7 ) }
B) y=23(x7)y = - 2 - \sqrt { 3 ( x - 7 ) }
C) x=2+3(y7)x = - 2 + \sqrt { 3 ( y - 7 ) }
D) x=23(y7)x = - 2 - \sqrt { 3 ( y - 7 ) }
E) x=2+3(y+7)x = - 2 + \sqrt { 3 ( y + 7 ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
69
Find the vertex,focus,and directrix of the parabola.​ x2+4y=0x ^ { 2 } + 4 y = 0

A)Vertex: (0,0);Focus: (14,0)\left( \frac { 1 } { 4 } , 0 \right) ;Directrix: y=14y = \frac { 1 } { 4 }
B)Vertex: (0,0);Focus: (14,0)\left( - \frac { 1 } { 4 } , 0 \right) ;Directrix: y=14y = \frac { 1 } { 4 }
C)Vertex: (0,0): Focus: (0,44)\left( 0 , \frac { 4 } { 4 } \right) Directrix: y=44y = - \frac { 4 } { 4 }
D)Vertex: (0,0);Focus: (0,44)\left( 0 , - \frac { 4 } { 4 } \right) ;Directrix: y=44y = \frac { 4 } { 4 }
E)Vertex: (0,0);Focus: (0,44)\left( 0 , - \frac { 4 } { 4 } \right) ;Directrix: y=44y = - \frac { 4 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
70
Find the vertex,focus,and directrix of the parabola.​ (x+5)2=4(y52)( x + 5 ) ^ { 2 } = 4 \left( y - \frac { 5 } { 2 } \right)

A)Vertex: (5,52)\left( - 5 , \frac { 5 } { 2 } \right) ;Focus: (5,72)\left( - 5 , \frac { 7 } { 2 } \right) ;Directrix: y=32y = \frac { 3 } { 2 }
B)Vertex: (52,5)\left( \frac { 5 } { 2 } , - 5 \right) ;Focus: (5,32)\left( - 5 , \frac { 3 } { 2 } \right) ;Directrix: y=32y = \frac { 3 } { 2 }
C)Vertex: (52,5)\left( \frac { 5 } { 2 } , - 5 \right) ;Focus: (5,72)\left( - 5 , \frac { 7 } { 2 } \right) ;Directrix: y=32y = \frac { 3 } { 2 }
D)Vertex: (5,52)\left( - 5 , \frac { 5 } { 2 } \right) ;Focus: (5,32)\left( - 5 , \frac { 3 } { 2 } \right) ;Directrix: y=72y = \frac { 7 } { 2 }
E)Vertex: (0,0)( 0,0 ) ;Focus: (5,72)\left( - 5 , \frac { 7 } { 2 } \right) ;Directrix: y=72y = \frac { 7 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
71
Find the vertex,focus,and directrix of the parabola.​ y=3x2y = - 3 x ^ { 2 }

A)Vertex: (0,0);Focus: (0,112)\left( 0 , - \frac { 1 } { 12 } \right) ;Directrix: y=112y = - \frac { 1 } { 12 }
B)Vertex:(0,0);Focus: (0,112)\left( 0 , - \frac { 1 } { 12 } \right) ;Directrix: y=112y = \frac { 1 } { 12 }
C)Vertex: (0,0);Focus: (0,13)\left( 0 , \frac { 1 } { 3 } \right) ;Directrix: y=13y = \frac { 1 } { 3 }
D)Vertex: (0,0);Focus: (0,112)\left( 0 , \frac { 1 } { 12 } \right) ;Directrix: y=112y = \frac { 1 } { 12 }
E)Vertex: (0,0);Focus: (0,13)\left( 0 , - \frac { 1 } { 3 } \right) ;Directrix: y=13y = \frac { 1 } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the vertex,focus,and directrix of the parabola.​ (x1)2+16(y+6)=0( x - 1 ) ^ { 2 } + 16 ( y + 6 ) = 0

A)Vertex: (0,4)( 0 , - 4 ) ;Focus: (1,6)( 1 , - 6 ) ;Directrix: y=0y = 0
B)Vertex: (1,10)( 1 , - 10 ) ;Focus: (1,10)( 1 , - 10 ) ;Directrix: y=0y = 0
C)Vertex: (4,1)( - 4,1 ) ;Focus: (4,1)( - 4,1 ) ;Directrix: y=0y = 0
D)Vertex: (1,6)( 1 , - 6 ) ;Focus: (1,10)( 1 , - 10 ) ;Directrix: y=0y = 0
E)Vertex: (1,6)( 1 , - 6 ) ;Focus: (1,4)( 1 , - 4 ) ;Directrix: y=6y = 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
73
Find the standard form of the equation of the parabola with the given characteristics. ​
Vertex: (0,2)( 0,2 ) ;directrix: y=10y = 10

A) x2=32(y10)x ^ { 2 } = - 32 ( y - 10 )
B) y2=32(x2)y ^ { 2 } = - 32 ( x - 2 )
C) x2=32(y2)x ^ { 2 } = 32 ( y - 2 )
D) y2=32(x2)y ^ { 2 } = 32 ( x - 2 )
E) x2=32(y2)x ^ { 2 } = - 32 ( y - 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
74
Find the vertex,focus,and directrix of the parabola.​ y2=10xy ^ { 2 } = 10 x

A)Vertex: (0,0);Focus: (104,0)\left( \frac { 10 } { 4 } , 0 \right) ;Directrix: x=104x = - \frac { 10 } { 4 }
B)Vertex: (0,0);Focus: (110,0)\left( \frac { 1 } { 10 } , 0 \right) ;Directrix: x=110x = \frac { 1 } { 10 }
C)Vertex: (0,0);Focus: (104,0)\left( - \frac { 10 } { 4 } , 0 \right) ;Directrix: x=104x = - \frac { 10 } { 4 }
D)Vertex: (0,0);Focus: (104,0)\left( - \frac { 10 } { 4 } , 0 \right) ;Directrix: x=104x = \frac { 10 } { 4 }
E)Vertex: (0,0);Focus: (110,0)\left( - \frac { 1 } { 10 } , 0 \right) ;Directrix: x=110x = \frac { 1 } { 10 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
75
The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​
Parabola: x2+20y=0x ^ { 2 } + 20 y = 0 Tangent Line: x+y5=0x + y - 5 = 0

A)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>The equations of a parabola and a tangent line to the parabola are given.Select the correct graph of both equations in the same viewing window. ​ Parabola:  x ^ { 2 } + 20 y = 0  Tangent Line:  x + y - 5 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
76
Find the vertex,focus,and directrix of the parabola.​ (x+3)+(y1)2=0( x + 3 ) + ( y - 1 ) ^ { 2 } = 0

A)Vertex: (3,1)( - 3,1 ) ;Focus: (134,1)\left( \frac { - 13 } { 4 } , 1 \right) ;Directrix: x=114x = \frac { - 11 } { 4 }
B)Vertex: (1,3,)( 1 , - 3 , ) ;Focus: (1,114)\left( 1 , \frac { - 11 } { 4 } \right) ;Directrix: x=134x = \frac { - 13 } { 4 }
C)Vertex: (1,3,)( 1 , - 3 , ) ;Focus: (114,1)\left( \frac { - 11 } { 4 } , 1 \right) ;Directrix: x=134x = \frac { - 13 } { 4 }
D)Vertex: (3,1)( - 3,1 ) ;Focus: (1,134)\left( 1 , \frac { - 13 } { 4 } \right) ;Directrix: x=134x = \frac { - 13 } { 4 }
E)Vertex: (3,1)( - 3,1 ) ;Focus: (1,114)\left( 1 , \frac { - 11 } { 4 } \right) ;Directrix: x=134x = \frac { - 13 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
77
The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by (x112)2=45(R12544)( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 ) .Select the correct graph of the function. ​

A)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​
B)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​
C)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​    .
D)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​
E)​  <strong>The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by  ( x - 112 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 12544 )  .Select the correct graph of the function. ​</strong> A)​   B)​   C)​   . D)​   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
78
Find the standard form of the equation of the parabola with the given characteristics. ​
Vertex: (6,5)( 6,5 ) ;focus: (8,5)( 8,5 )

A) (y6)2=8(x5)( y - 6 ) ^ { 2 } = 8 ( x - 5 )
B) (y5)2=8(x6)( y - 5 ) ^ { 2 } = 8 ( x - 6 )
C) (x6)2=8(y5)( x - 6 ) ^ { 2 } = - 8 ( y - 5 )
D) (y6)2=8(x5)( y - 6 ) ^ { 2 } = - 8 ( x - 5 )
E) (x5)2=8(y6)( x - 5 ) ^ { 2 } = 8 ( y - 6 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
79
The revenue R (in dollars)generated by the sale of x units of a patio furniture set is given by (x116)2=45(R16,820)( x - 116 ) ^ { 2 } = - \frac { 4 } { 5 } ( R - 16,820 ) .Approximate the number of sales that will maximize revenue. ​

A) R=116x54x2R = 116 x - \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=116x = 116 units.
B) R=116x+54x2R = 116 x + \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=16,820x = 16,820 units.
C) R=290x+54x2R = 290 x + \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=16,820x = 16,820 units.
D) R=290x54x2R = 290 x - \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=116x = 116 units.
E) R=290x+54x2R = 290 x + \frac { 5 } { 4 } x ^ { 2 } The revenue is maximum when x=290x = 290 units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
80
Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​
Horizontal axis and passes through the point (4,7)( - 4,7 )

A) x2=449yx ^ { 2 } = \frac { - 4 } { 49 } y
B) y2=449xy ^ { 2 } = \frac { - 4 } { 49 } x
C) y2=494xy ^ { 2 } = \frac { 49 } { - 4 } x
D) x2=494yx ^ { 2 } = \frac { 49 } { - 4 } y
E) y2=xy ^ { 2 } = x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.