Deck 8: Combinations of Functions Composite Functions

ู…ู„ุก ุงู„ุดุงุดุฉ (f)
exit full mode
ุณุคุงู„
โ€‹Find gโˆ˜gg \circ g .โ€‹ g(x)=xโˆ’2g ( x ) = x - 2 โ€‹

A) (xโˆ’2)2( x - 2 ) ^ { 2 }
B) x2โˆ’2x ^ { 2 } - 2
C) x+4x + 4
D) โˆ’xโˆ’4- x - 4
E) xโˆ’4x - 4
ุงุณุชุฎุฏู… ุฒุฑ ุงู„ู…ุณุงูุฉ ุฃูˆ
up arrow
down arrow
ู„ู‚ู„ุจ ุงู„ุจุทุงู‚ุฉ.
ุณุคุงู„
Find (fโˆ’g)(x)( f - g ) ( x ) .โ€‹ f(x)=x2+3,g(x)=5โˆ’xf ( x ) = x ^ { 2 } + 3 , g ( x ) = \sqrt { 5 - x } โ€‹

A) x2+3+5โˆ’xx ^ { 2 } + 3 + \sqrt { 5 - x }
B) x2โˆ’3+5โˆ’xx ^ { 2 } - 3 + \sqrt { 5 - x }
C) x2โˆ’3+5+xx ^ { 2 } - 3 + \sqrt { 5 + x }
D) x2+3โˆ’5โˆ’xx ^ { 2 } + 3 - \sqrt { 5 - x }
E) x2โˆ’3โˆ’5โˆ’xx ^ { 2 } - 3 - \sqrt { 5 - x }
ุณุคุงู„
Find (fg)(x)( f g ) ( x ) .โ€‹ f(x)=1x2,g(x)=1x4f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = \frac { 1 } { x ^ { 4 } } โ€‹

A) 1x4\frac { 1 } { x ^ { 4 } }
B) 1x2\frac { 1 } { x ^ { 2 } }
C) 1x6\frac { 1 } { x ^ { 6 } }
D) x6x ^ { 6 }
E) x4x2\frac { x ^ { 4 } } { x ^ { 2 } }
ุณุคุงู„
โ€‹Find gโˆ˜fg \circ f .โ€‹ f(x)=x2,g(x)=xโˆ’4f ( x ) = x ^ { 2 } , g ( x ) = x - 4 โ€‹ โ€‹

A) x2โˆ’4x ^ { 2 } - 4
B) x2x ^ { 2 }
C) (xโˆ’4)2( x - 4 ) ^ { 2 }
D) (x2+4)\left( x ^ { 2 } + 4 \right)
E) (x+4)2( x + 4 ) ^ { 2 }
ุณุคุงู„
Evaluate the indicated function for f(x)=x2+3f ( x ) = x ^ { 2 } + 3 and g(x)=xโˆ’4g ( x ) = x - 4 .โ€‹ (fโˆ’g)(3t)( f - g ) ( 3 t ) โ€‹ โ€‹

A) 9t2+3t+79 t ^ { 2 } + 3 t + 7
B) 6t+76 t + 7
C) 9t2+3tโˆ’79 t ^ { 2 } + 3 t - 7
D) 9t2โˆ’3tโˆ’79 t ^ { 2 } - 3 t - 7
E) 9t2โˆ’3t+79 t ^ { 2 } - 3 t + 7
ุณุคุงู„
Find (f + g)(x).โ€‹ f(x)=x2+4,g(x)=7โˆ’xf ( x ) = x ^ { 2 } + 4 , g ( x ) = \sqrt { 7 - x } โ€‹

A) x2+4โˆ’7โˆ’xx ^ { 2 } + 4 - \sqrt { 7 - x }
B) x2+4+7โˆ’xx ^ { 2 } + 4 + \sqrt { 7 - x }
C) x2โˆ’4+7+xx ^ { 2 } - 4 + \sqrt { 7 + x }
D) x2โˆ’4โˆ’7โˆ’xx ^ { 2 } - 4 - \sqrt { 7 - x }
E) x2โˆ’4+7โˆ’xx ^ { 2 } - 4 + \sqrt { 7 - x }
ุณุคุงู„
Find (f / g)(x).What is the domain of f / g?โ€‹ f(x)=x2,g(x)=7xโˆ’3f ( x ) = x ^ { 2 } , g ( x ) = 7 x - 3 โ€‹

A) โˆ’x27xโˆ’3- \frac { x ^ { 2 } } { 7 x - 3 } ;all real numbers x.
B) 7x+3x2\frac { 7 x + 3 } { x ^ { 2 } } ;all real numbers x except x = 0
C) x27xโˆ’3\frac { x ^ { 2 } } { 7 x - 3 } ;all real numbers x except x = 37\frac { 3 } { 7 }
D) 7xโˆ’3x2\frac { 7 x - 3 } { x ^ { 2 } } ;all real numbers x except x = 0
E) x27x+3\frac { x ^ { 2 } } { 7 x + 3 } ;all real numbers x except x = 73\frac { 7 } { 3 }
ุณุคุงู„
Find (f + g)(x).โ€‹ f(x)=2xโˆ’3,g(x)=4โˆ’xf ( x ) = 2 x - 3 , g ( x ) = 4 - x โ€‹

A) 3xโˆ’13 x - 1
B) 2xโˆ’12 x - 1
C) 2x+12 x + 1
D) 3x+13 x + 1
E) x+1x + 1
ุณุคุงู„
โ€‹โ€‹โ€‹Evaluate the indicated function for f(x)=x2+6f ( x ) = x ^ { 2 } + 6 and g(x)=xโˆ’5g ( x ) = x - 5 .โ€‹ (f/g)(โˆ’4)โˆ’g(6)( f / g ) ( - 4 ) - g ( 6 ) โ€‹ โ€‹

A) โˆ’526- \frac { 5 } { 26 }
B) โˆ’319- \frac { 31 } { 9 }
C) โˆ’913- \frac { 9 } { 13 }
D) โˆ’139- \frac { 13 } { 9 }
E) โˆ’931- \frac { 9 } { 31 }
ุณุคุงู„
โ€‹โ€‹Evaluate the indicated function for f(x)=x2+5f ( x ) = x ^ { 2 } + 5 and g(x)=xโˆ’4g ( x ) = x - 4 .โ€‹ (f/g)(5)( f / g ) ( 5 ) โ€‹ โ€‹

A)30
B) 534\frac { 5 } { 34 }
C) 323\frac { 32 } { 3 }
D) 231\frac { 2 } { 31 }
E) 345\frac { 34 } { 5 }
ุณุคุงู„
Evaluate the indicated function for f(x)=x2+2f ( x ) = x ^ { 2 } + 2 and g(x)=xโˆ’4g ( x ) = x - 4 .โ€‹ (f+g)(3)( f + g ) ( 3 ) โ€‹

A)12
B)-10
C)7
D)14
E)10
ุณุคุงู„
Evaluate the indicated function for f(x)=x2+3f ( x ) = x ^ { 2 } + 3 and g(x)=xโˆ’6g ( x ) = x - 6 .โ€‹ (fโˆ’g)(0)( f - g ) ( 0 ) โ€‹ โ€‹

A)48
B)39
C)9
D)0
E)-39
ุณุคุงู„
Find (f + g)(x).โ€‹ f(x)=x+4,g(x)=xโˆ’4f ( x ) = x + 4 , g ( x ) = x - 4 โ€‹

A)2x
B)4x
C)-4x
D)-2x
E)2x + 8
ุณุคุงู„
โ€‹Evaluate the indicated function for f(x)=x2+5f ( x ) = x ^ { 2 } + 5 and g(x)=xโˆ’2g ( x ) = x - 2 .โ€‹ (fg)(5)( f g ) ( 5 ) โ€‹ โ€‹

A)92
B)90
C)-86
D)89
E)91
ุณุคุงู„
Find (f/g)(x)( f / g ) ( x ) .โ€‹ f(x)=1x2,g(x)=1x4f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = \frac { 1 } { x ^ { 4 } } โ€‹

A) 1x2\frac { 1 } { x ^ { 2 } }
B) x6x ^ { 6 }
C) 1x4\frac { 1 } { x ^ { 4 } } โ€‹
D) 1x6\frac { 1 } { x ^ { 6 } }
E) x2x ^ { 2 }
ุณุคุงู„
Find (f - g)(x).โ€‹ f(x)=2xโˆ’2,g(x)=4โˆ’xf ( x ) = 2 x - 2 , g ( x ) = 4 - x โ€‹

A) 3xโˆ’63 x - 6
B) 2x+62 x + 6
C) 2xโˆ’62 x - 6
D) xโˆ’6x - 6
E) 3x+63 x + 6
ุณุคุงู„
Find (f - g)(x).โ€‹ f(x)=x+3,g(x)=xโˆ’3f ( x ) = x + 3 , g ( x ) = x - 3 โ€‹

A)2x - 6
B)6
C)2x - 3
D)2x + 6
E)2x
ุณุคุงู„
Find (fg)(x).โ€‹ f(x)=x2,g(x)=7xโˆ’7f ( x ) = x ^ { 2 } , g ( x ) = 7 x - 7 โ€‹

A) 7x3+7x27 x ^ { 3 } + 7 x ^ { 2 }
B) 7x3โˆ’7x27 x ^ { 3 } - 7 x ^ { 2 }
C) 7x2โˆ’7x37 x ^ { 2 } - 7 x ^ { 3 }
D) 7x2+7x37 x ^ { 2 } + 7 x ^ { 3 }
E) 7xโˆ’7x27 x - 7 x ^ { 2 }
ุณุคุงู„
Find fโˆ˜gf \circ g .โ€‹ f(x)=x2,g(x)=xโˆ’2f ( x ) = x ^ { 2 } , g ( x ) = x - 2 โ€‹

A) x2x ^ { 2 }
B) (xโˆ’2)2( x - 2 ) ^ { 2 }
C) (x+2)2( x + 2 ) ^ { 2 }
D) (x2โˆ’2)\left( x ^ { 2 } - 2 \right)
E) (x2+2)\left( x ^ { 2 } + 2 \right)
ุณุคุงู„
Evaluate the indicated function for f(x)=x2+2f ( x ) = x ^ { 2 } + 2 and g(x)=xโˆ’6g ( x ) = x - 6 .โ€‹ (fโˆ’g)(โˆ’5)( f - g ) ( - 5 ) โ€‹ โ€‹

A)28
B)38
C)-38
D)125
E)17
ุณุคุงู„
The number N of bacteria in a refrigerated food is given by N(T)=10T2โˆ’20T+600,1โ‰คTโ‰ค20N ( T ) = 10 T ^ { 2 } - 20 T + 600,1 \leq T \leq 20 where T is the temperature of the food in degrees Celsius.When the food is removed from refrigeration,the temperature of the food is given by T(t)=3t+2,0โ‰คtโ‰ค6T ( t ) = 3 t + 2,0 \leq t \leq 6 where t is the time in hours. Find the bacteria count after 0.5 hour.
โ€‹

A)About 565 bacteria
B)About 793 bacteria
C)About 653 bacteria
D)About 390 bacteria
E)About 705 bacteria
ุณุคุงู„
Determine whether the statement is true or false. โ€‹
If f(x)= x + 1 and g(x)= 5x,then (fโˆ˜g)(x)=(gโˆ˜f)(x)( f \circ g ) ( x ) = ( g \circ f ) ( x ) .
โ€‹

A)False
B)True
ุณุคุงู„
Consider the functions f(x)=x3f ( x ) = x ^ { 3 } and g(x)=xg ( x ) = \sqrt { x } . โ€‹
Find f/gf / g .
โ€‹

A) x3xx ^ { 3 } \sqrt { x }
B) xx2\frac { \sqrt { x } } { x ^ { 2 } }
C) xx3\frac { \sqrt { x } } { x ^ { 3 } }
D) x2xx\frac { x ^ { 2 } \sqrt { x } } { x }
E) x2xx ^ { 2 } \sqrt { x }
ุณุคุงู„
Find fโˆ˜gf \circ g and the domain of the composite function.โ€‹ f(x)=1x,g(x)=x+7f ( x ) = \frac { 1 } { x } , g ( x ) = x + 7 โ€‹

A) 1x+7\frac { 1 } { x } + 7 Domain of fโˆ˜gf \circ g : all real numbers x except x=0x = 0
B) โˆ’1x+7- \frac { 1 } { x + 7 } Domain of fโˆ˜gf \circ g : all real numbers x except x=โˆ’7x = - 7
C) 1x+7\frac { 1 } { x + 7 } Domain of fโˆ˜gf \circ g : all real numbers x except x=โˆ’7x = - 7
D) 1xโˆ’7\frac { 1 } { x } - 7 Domain of fโˆ˜gf \circ g : all real numbers x except x=0x = 0
E) 1xโˆ’7\frac { 1 } { x - 7 } Domain of fโˆ˜gf \circ g : all real numbers x except x=7x = 7
ุณุคุงู„
Find gโˆ˜fg \circ f and the domain of the composite function.โ€‹ f(x)=x2+4,g(x)=xf ( x ) = x ^ { 2 } + 4 , g ( x ) = \sqrt { x } โ€‹

A) (x+4)4( x + 4 ) ^ { 4 } Domain of gโˆ˜fg \circ f : all real numbers x
B) (xโˆ’4)4( x - 4 ) ^ { 4 } Domain of gโˆ˜fg \circ f : all real numbers x
C) x2+4\sqrt { x ^ { 2 } + 4 } Domain of gโˆ˜fg \circ f : all real numbers x
D) (xโˆ’4)4\sqrt { ( x - 4 ) ^ { 4 } } Domain of gโˆ˜fg \circ f : all real numbers x
E) (x+4)4\sqrt { ( x + 4 ) ^ { 4 } } Domain of gโˆ˜fg \circ f : all real numbers x
ุณุคุงู„
A pebble is dropped into a calm pond,causing ripples in the form of concentric circles.The radius (in feet)of the outer ripple is r(t)=0.2tr ( t ) = 0.2 t ,where t is the time in seconds after the pebble strikes the water.The area of the circle is given by the function A(r)=ฯ€r2A ( r ) = \pi r ^ { 2 } .Find and interpret (Aโˆ˜r)(t)( A \circ r ) ( t ) . โ€‹

A) (Aโˆ˜r)(t)=0.2ฯ€t( A \circ r ) ( t ) = 0.2 \pi t ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
B) (Aโˆ˜r)(t)=0.2ฯ€t2( A \circ r ) ( t ) = 0.2 \pi t ^ { 2 } ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
C) (Aโˆ˜r)(t)=0.04ฯ€t( A \circ r ) ( t ) = 0.04 \pi t ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
D) (Aโˆ˜r)(t)=0.04ฯ€t2( A \circ r ) ( t ) = 0.04 \pi t ^ { 2 } ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
E) (Aโˆ˜r)(t)=0.04ฯ€t3( A \circ r ) ( t ) = 0.04 \pi t ^ { 3 } ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
ุณุคุงู„
From 2003 through 2008,the sales R1R _ { 1 } (in thousands of dollars)for one of two restaurants owned by the same parent company can be modeled byโ€‹ R1=480โˆ’6tโˆ’0.6t2,t=3,4,5,6,7,8R _ { 1 } = 480 - 6 t - 0.6 t ^ { 2 } , t = 3,4,5,6,7,8 โ€‹ where t = 3 represents 2003.During the same six-year period,the sales R2R _ { 2 } (in thousands of dollars)for the second restaurant can be modeled byโ€‹ R2=259+0.77t,t=3,4,5,6,7,8R _ { 2 } = 259 + 0.77 t , t = 3,4,5,6,7,8 โ€‹
Write a function R3R _ { 3 } that represents the total sales of the two restaurants owned by the same parent company.
โ€‹

A)โ€‹ R3=739โˆ’5.23t2โˆ’0.6tR _ { 3 } = 739 - 5.23 t ^ { 2 } - 0.6 t
B)โ€‹ R3=739โˆ’5.23t+0.6t2R _ { 3 } = 739 - 5.23 t + 0.6 t ^ { 2 }
C)โ€‹ R3=221โˆ’6.77t2โˆ’0.6tR _ { 3 } = 221 - 6.77 t ^ { 2 } - 0.6 t
D)โ€‹ R3=739โˆ’5.23t2+0.6tR _ { 3 } = 739 - 5.23 t ^ { 2 } + 0.6 t
E)โ€‹ R3=739โˆ’5.23tโˆ’0.6t2R _ { 3 } = 739 - 5.23 t - 0.6 t ^ { 2 }
ุณุคุงู„
The spread of a contaminant is increasing in a circular pattern on the surface of a lake.The radius of the contaminant can be modeled by r(t)=2.25tr ( t ) = 2.25 \sqrt { t } ,where r is the radius in meters and t is the time in hours since contamination. โ€‹
Find a function that gives the area A of the circular lake in terms of the time since the spread began.
โ€‹

A) Aโˆ˜r(t)=5.0625ฯ€tA \circ r ( t ) = 5.0625 \pi \sqrt { t }
B) Aโˆ˜r(t)=2.25ฯ€tA \circ r ( t ) = 2.25 \pi t
C) Aโˆ˜r(t)=5.0625tA \circ r ( t ) = 5.0625 t
D) Aโˆ˜r(t)=5.0625tA \circ r ( t ) = 5.0625 \sqrt { t }
E) Aโˆ˜r(t)=5.0625ฯ€tA \circ r ( t ) = 5.0625 \pi t
ุณุคุงู„
โ€‹Find gโˆ˜fg \circ f and the domain of the composite function.โ€‹ f(x)=1x,g(x)=x+5f ( x ) = \frac { 1 } { x } , g ( x ) = x + 5 โ€‹

A) 1x+5\frac { 1 } { x + 5 } Domain of gโˆ˜fg \circ f : all real numbers x except x=โˆ’5x = - 5
B) 1xโˆ’5\frac { 1 } { x } - 5 Domain of gโˆ˜fg \circ f : all real numbers x except x=0x = 0
C) 1x+5\frac { 1 } { x } + 5 Domain of gโˆ˜fg \circ f : all real numbers x except x=0x = 0
D) โˆ’1x+5- \frac { 1 } { x + 5 } Domain of gโˆ˜fg \circ f : all real numbers x except x=โˆ’3x = - 3
E) 1xโˆ’5\frac { 1 } { x - 5 } Domain of gโˆ˜fg \circ f : all real numbers x except x=5x = 5
ุณุคุงู„
Find fโˆ˜gf \circ g and the domain of the composite function.โ€‹ f(x)=โˆฃxโˆฃ,g(x)=x+3f ( x ) = | x | , g ( x ) = x + 3 โ€‹

A) โˆฃ(xโˆ’3)3โˆฃ\left| ( x - 3 ) ^ { 3 } \right| Domain of fโˆ˜gf \circ g : all real numbers x
B) (x+3)3\sqrt { ( x + 3 ) ^ { 3 } } Domain of fโˆ˜gf \circ g : all real numbers x
C) โˆฃx+3โˆฃ| x + 3 | Domain of fโˆ˜gf \circ g : all real numbers x
D) โˆฃ(x+3)3โˆฃ\left| ( x + 3 ) ^ { 3 } \right| Domain of fโˆ˜gf \circ g : all real numbers x
E) โˆฃxโˆ’3โˆฃ| x - 3 | Domain of fโˆ˜gf \circ g : all real numbers x
ุณุคุงู„
The suggested retail price of a new hybrid car is p dollars.The dealership advertises a factory rebate of $2000 .
โ€‹
Select a function R in terms of p giving the cost of the hybrid car after receiving the rebate from the factory.
โ€‹

A) R(p)=2000โˆ’pR ( p ) = 2000 - p
B) R(p)=pโˆ’2000R ( p ) = p - 2000
C) R(p)=p+2000R ( p ) = p + 2000
D) R(p)=p+1000R ( p ) = p + 1000
E) R(p)=pโˆ’1000R ( p ) = p - 1000
ุณุคุงู„
The weekly cost C of producing units x in a manufacturing process is given by C(x)=30x+750C ( x ) = 30 x + 750 .The number of units x produced in t hours is given by x(t)=70tx ( t ) = 70 t . โ€‹
Find the cost of the units produced in 6 hours.
โ€‹

A)11,855
B)11,850
C)11,846
D)13,350
E)11,854
ุณุคุงู„
Find gโˆ˜fg \circ f and the domain of the composite function.โ€‹ f(x)=โˆฃxโˆฃ,g(x)=x+4f ( x ) = | x | , g ( x ) = x + 4 โ€‹ โ€‹

A) โˆฃxโˆ’4โˆฃ| x - 4 | Domain of gโˆ˜fg \circ f : all real numbers x
B) xโˆ’โˆฃ4โˆฃx - | 4 | Domain of gโˆ˜fg \circ f : all real numbers x
C) โˆฃxโˆฃโˆ’4| x | - 4 Domain of gโˆ˜fg \circ f : all real numbers x
D) โˆฃxโˆฃ+4| x | + 4 Domain of gโˆ˜fg \circ f : all real numbers x
E) โˆฃx+4โˆฃ| x + 4 | Domain of gโˆ˜fg \circ f : all real numbers x
ุณุคุงู„
The number of people playing tennis T (in millions)in the United States from 2000 through 2007 can be approximated by the functionโ€‹ T(t)=0.0235t4โˆ’0.3401t3+2.556t2โˆ’6.86t+23.8T ( t ) = 0.0235 t ^ { 4 } - 0.3401 t ^ { 3 } + 2.556 t ^ { 2 } - 6.86 t + 23.8 โ€‹ and the U.S.population P (in millions)from 2000 through 2007 can be approximated by the function P(t)=5.8t+224.5P ( t ) = 5.8 t + 224.5 ,where t represents the year,with t = 0 corresponding to 2000.
Evaluate the function h(t)=0.0235t4โˆ’0.3401t3+2.556t2โˆ’6.86t+23.85.8t+224.5h ( t ) = \frac { 0.0235 t ^ { 4 } - 0.3401 t ^ { 3 } + 2.556 t ^ { 2 } - 6.86 t + 23.8 } { 5.8 t + 224.5 } for t = 0 and 3.

A)h(0)= 0.1060,h(3)= 0.0783
B)h(0)= 0.3060,h(3)= 0.2783
C)h(0)= -0.2060,h(3)= -0.1783
D)h(0)= 0.1783,h(3)= 0.2060
E)h(0)= -0.1060,h(3)= -0.0783
ุณุคุงู„
The total numbers of Navy personnel N (in thousands)and Marines personnel M (in thousands)from 2000 through 2007 can be approximated by the modelsโ€‹ N(t)=0.194t3โˆ’7.88t2+12.9t+375N ( t ) = 0.194 t ^ { 3 } - 7.88 t ^ { 2 } + 12.9 t + 375 and M(t)=0.031t3โˆ’0.25t2+6.7t+173M ( t ) = 0.031 t ^ { 3 } - 0.25 t ^ { 2 } + 6.7 t + 173 โ€‹ where t represents the year,with t = 0 corresponding to 2000.
Find and interpret (Nโˆ’M)(t)( N - M ) ( t ) .
โ€‹

A) (Nโˆ’M)(t)=0.163t3+7.63t2โˆ’6.2t+202( N - M ) ( t ) = 0.163 t ^ { 3 } + 7.63 t ^ { 2 } - 6.2 t + 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
B) (Nโˆ’M)(t)=0.163t3โˆ’7.63t2โˆ’6.2tโˆ’202( N - M ) ( t ) = 0.163 t ^ { 3 } - 7.63 t ^ { 2 } - 6.2 t - 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
C) (Nโˆ’M)(t)=0.163t3โˆ’7.63t2โˆ’6.2t+202( N - M ) ( t ) = 0.163 t ^ { 3 } - 7.63 t ^ { 2 } - 6.2 t + 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
D) (Nโˆ’M)(t)=0.163t3+7.63t2+6.2t+202( N - M ) ( t ) = 0.163 t ^ { 3 } + 7.63 t ^ { 2 } + 6.2 t + 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
E) (Nโˆ’M)(t)=0.163t3โˆ’7.63t2+6.2t+202( N - M ) ( t ) = 0.163 t ^ { 3 } - 7.63 t ^ { 2 } + 6.2 t + 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
ุณุคุงู„
The number of people playing tennis T (in millions)in the United States from 2000 through 2007 can be approximated by the functionโ€‹ T(t)=0.0236t4โˆ’0.3401t3+6.556t2โˆ’2.86t+26.8T ( t ) = 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } + 6.556 t ^ { 2 } - 2.86 t + 26.8 โ€‹ and the U.S.population P (in millions)from 2000 through 2007 can be approximated by the function P(t)=5.78t+221.5P ( t ) = 5.78 t + 221.5 ,where t represents the year,with t = 0 corresponding to 2000.
Find h(t)=T(t)P(t)h ( t ) = \frac { T ( t ) } { P ( t ) } .
โ€‹

A) h(t)=0.0236t4โˆ’0.3401t3โˆ’6.556t2โˆ’2.86t+26.85.78t+221.5h ( t ) = \frac { 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } - 6.556 t ^ { 2 } - 2.86 t + 26.8 } { 5.78 t + 221.5 } โ€‹
B) h(t)=0.0236t4โˆ’0.3401t3+6.556t2โˆ’2.86t+26.85.78t+221.5h ( t ) = \frac { 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } + 6.556 t ^ { 2 } - 2.86 t + 26.8 } { 5.78 t + 221.5 } โ€‹
C) h(t)=0.0236t4โˆ’0.3401t3โˆ’6.556t2โˆ’2.86tโˆ’26.85.78tโˆ’221.5h ( t ) = \frac { 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } - 6.556 t ^ { 2 } - 2.86 t - 26.8 } { 5.78 t - 221.5 }
D) h(t)=0.0236t4โˆ’0.3401t3+6.556t2โˆ’2.86t+26.85.78tโˆ’221.5h ( t ) = \frac { 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } + 6.556 t ^ { 2 } - 2.86 t + 26.8 } { 5.78 t - 221.5 } โ€‹
E) h(t)=0.0236t4+0.3401t3+6.556t2โˆ’2.86t+26.85.78t+221.5h ( t ) = \frac { 0.0236 t ^ { 4 } + 0.3401 t ^ { 3 } + 6.556 t ^ { 2 } - 2.86 t + 26.8 } { 5.78 t + 221.5 }
ุณุคุงู„
The total numbers of Navy personnel N (in thousands)and Marines personnel M (in thousands)from 2000 through 2007 can be approximated by the modelsโ€‹ N(t)=0.193t3โˆ’3.88t2+15.9t+370N ( t ) = 0.193 t ^ { 3 } - 3.88 t ^ { 2 } + 15.9 t + 370 and M(t)=0.033t3โˆ’0.21t2+1.7t+171M ( t ) = 0.033 t ^ { 3 } - 0.21 t ^ { 2 } + 1.7 t + 171 โ€‹ where t represents the year,with t = 0 corresponding to 2000.
โ€‹
Find and interpret (N+M)(t)( N + M ) ( t ) .
โ€‹

A) (N+M)(t)=0.226t3+4.09t2โˆ’17.6tโˆ’541( N + M ) ( t ) = 0.226 t ^ { 3 } + 4.09 t ^ { 2 } - 17.6 t - 541 ,which represents the total number of Navy and Marines personnel combined.
B) (N+M)(t)=0.226t3+4.09t2+17.6t+541( N + M ) ( t ) = 0.226 t ^ { 3 } + 4.09 t ^ { 2 } + 17.6 t + 541 ,which represents the total number of Navy and Marines personnel combined.
C) (N+M)(t)=0.226t3โˆ’4.09t2โˆ’17.6tโˆ’541( N + M ) ( t ) = 0.226 t ^ { 3 } - 4.09 t ^ { 2 } - 17.6 t - 541 ,which represents the total number of Navy and Marines personnel combined.
D) (N+M)(t)=0.226t3โˆ’4.09t2+17.6t+541( N + M ) ( t ) = 0.226 t ^ { 3 } - 4.09 t ^ { 2 } + 17.6 t + 541 ,which represents the total number of Navy and Marines personnel combined.
E) (N+M)(t)=0.226t2โˆ’4.09t3โˆ’17.6t+541( N + M ) ( t ) = 0.226 t ^ { 2 } - 4.09 t ^ { 3 } - 17.6 t + 541 ,which represents the total number of Navy and Marines personnel combined.
ุณุคุงู„
The research and development department of an automobile manufacturer has determined that when a driver is required to stop quickly to avoid an accident,the distance (in feet)the car travels during the driver's reaction time is given by R(x)=52xR ( x ) = \frac { 5 } { 2 } x ,where x is the speed of the car in miles per hour.The distance (in feet)traveled while the driver is braking is given by B(x)=111x2B ( x ) = \frac { 1 } { 11 } x ^ { 2 } .Find the function that represents the total stopping distance T. โ€‹

A) T=โˆ’52x+111x2T = - \frac { 5 } { 2 } x + \frac { 1 } { 11 } x ^ { 2 }
B) T=52xโˆ’111x2T = \frac { 5 } { 2 } x - \frac { 1 } { 11 } x ^ { 2 }
C) T=52x2+111x2T = \frac { 5 } { 2 } x ^ { 2 } + \frac { 1 } { 11 } x ^ { 2 }
D) T=โˆ’52xโˆ’111x2T = - \frac { 5 } { 2 } x - \frac { 1 } { 11 } x ^ { 2 }
E) T=52x+111x2T = \frac { 5 } { 2 } x + \frac { 1 } { 11 } x ^ { 2 }
ุณุคุงู„
Find fโˆ˜gf \circ g and the domain of the composite function.โ€‹ f(x)=x+5,g(x)=x2f ( x ) = \sqrt { x + 5 } , g ( x ) = x ^ { 2 } โ€‹

A) (x+5)2( x + 5 ) ^ { 2 } Domain of fโˆ˜gf \circ g : all real numbers x
B) x2+5\sqrt { x ^ { 2 } + 5 } Domain of fโˆ˜gf \circ g : all real numbers x
C) โˆ’(x+5)2- \sqrt { ( x + 5 ) ^ { 2 } } Domain of fโˆ˜gf \circ g : all real numbers x
D) (xโˆ’5)2( x - 5 ) ^ { 2 } Domain of fโˆ˜gf \circ g : all real numbers x
E) (xโˆ’5)2\sqrt { ( x - 5 ) ^ { 2 } } Domain of fโˆ˜gf \circ g : all real numbers x
ุณุคุงู„
Find (f + g)(x).โ€‹โ€‹ f(x)=x2โˆ’2xโˆ’1g(x)=โˆ’3x2+xโˆ’1\begin{array} { l } f ( x ) = x ^ { 2 } - 2 x - 1 \\g ( x ) = - 3 x ^ { 2 } + x - 1\end{array} โ€‹ โ€‹

A)โ€‹ (f+g)(x)=4x4โˆ’3x2( f + g ) ( x ) = 4 x ^ { 4 } - 3 x ^ { 2 }
B)โ€‹ (f+g)(x)=2x2โˆ’x+2( f + g ) ( x ) = 2 x ^ { 2 } - x + 2
C)โ€‹ (f+g)(x)=โˆ’2x4โˆ’x2โˆ’2( f + g ) ( x ) = - 2 x ^ { 4 } - x ^ { 2 } - 2
D)โ€‹ (f+g)(x)=4x2โˆ’3x( f + g ) ( x ) = 4 x ^ { 2 } - 3 x
E)โ€‹ (f+g)(x)=โˆ’2x2โˆ’xโˆ’2( f + g ) ( x ) = - 2 x ^ { 2 } - x - 2
ุณุคุงู„
Let Let   .Find the composite function.โ€‹  <div style=padding-top: 35px> .Find the composite function.โ€‹ Let   .Find the composite function.โ€‹  <div style=padding-top: 35px>
ุณุคุงู„
Let f (x)= 2x + 1,g(x)= 3x - 2.Find the function.โ€‹ (fโˆ’g)(x)( f - g ) ( x ) โ€‹

A) (fโˆ’g)(x)=2x+13xโˆ’2( f - g ) ( x ) = \frac { 2 x + 1 } { 3 x - 2 }
B) (fโˆ’g)(x)=3โˆ’x( f - g ) ( x ) = 3 - x
C) (fโˆ’g)(x)=6x2โˆ’xโˆ’2( f - g ) ( x ) = 6 x ^ { 2 } - x - 2
D) (fโˆ’g)(x)=5xโˆ’1( f - g ) ( x ) = 5 x - 1
E)none of the above
ุณุคุงู„
Let f (x)= 2x - 1,g(x)= 3x - 2.Find the domain of the function.โ€‹ (f+g)(x)( f + g ) ( x ) โ€‹

A) (โˆ’โˆž,โˆž)( - \infty , \infty )
B) [0,โˆž)[ 0 , \infty )
C) (โˆ’โˆž,0]( - \infty , 0 ]
D) (โˆ’โˆž,0)( - \infty , 0 )
E) (0,โˆž)( 0 , \infty )
ุณุคุงู„
Use the graphs of f and g to evaluate the function.  <strong>Use the graphs of f and g to evaluate the function.      ( f \circ g ) ( 3 ) </strong> A)1 B)-2 C)4 D)-1 E)2 <div style=padding-top: 35px>   <strong>Use the graphs of f and g to evaluate the function.      ( f \circ g ) ( 3 ) </strong> A)1 B)-2 C)4 D)-1 E)2 <div style=padding-top: 35px>  (fโˆ˜g)(3)( f \circ g ) ( 3 )

A)1
B)-2
C)4
D)-1
E)2
ุณุคุงู„
Find fโˆ˜gf \circ g . f(x)=โˆ’2xโˆ’9g(x)=x+5f ( x ) = - 2 x - 9 \quad g ( x ) = x + 5

A) (fโˆ˜g)(x)=โˆ’2xโˆ’19( f \circ g ) ( x ) = - 2 x - 19
B) (fโˆ˜g)(x)=โˆ’3xโˆ’14( f \circ g ) ( x ) = - 3 x - 14
C) (fโˆ˜g)(x)=โˆ’2x2โˆ’19xโˆ’45( f \circ g ) ( x ) = - 2 x ^ { 2 } - 19 x - 45
D) (fโˆ˜g)(x)=โˆ’3xโˆ’4( f \circ g ) ( x ) = - 3 x - 4
E) (fโˆ˜g)(x)=โˆ’2xโˆ’4( f \circ g ) ( x ) = - 2 x - 4
ุณุคุงู„
Find ( fg )(x). f(x)=3xg(x)=5x+7f ( x ) = \sqrt { 3 x } \quad g ( x ) = \sqrt { 5 x + 7 }

A) (fg)(x)=8x+7( f g ) ( x ) = \sqrt { 8 x + 7 }
B) (fg)(x)=15x2+7( f g ) ( x ) = \sqrt { 15 x ^ { 2 } + 7 }
C) (fg)(x)=15x2+21x( f g ) ( x ) = \sqrt { 15 x ^ { 2 } + 21 x }
D) (fg)(x)=x15+21x( f g ) ( x ) = x \sqrt { 15 } + \sqrt { 21 x }
E) (fg)(x)=x15+21x( f g ) ( x ) = x \sqrt { 15 + 21 x }
ุณุคุงู„
Let f (x)= 3x,g (x)= x + 1.Find the composite function. โ€‹โ€‹ Let f (x)= 3x,g (x)= x + 1.Find the composite function. โ€‹โ€‹   โ€‹ Please give the respnce as an expression (not an equation).<div style=padding-top: 35px> โ€‹
Please give the respnce as an expression (not an equation).
ุณุคุงู„
Evaluate the indicated function for f(x)=x2โˆ’7f ( x ) = x ^ { 2 } - 7 and g(x)=x+8g ( x ) = x + 8 .โ€‹ (fโˆ’g)(t+8)( f - g ) ( t + 8 )

A)โ€‹ t2+15t+57t ^ { 2 } + 15 t + 57
B)โ€‹ t2+15t+41t ^ { 2 } + 15 t + 41
C)โ€‹ t2+17t+41t ^ { 2 } + 17 t + 41
D)โ€‹ t2โˆ’t+41t ^ { 2 } - t + 41
E)โ€‹ t2+17t+57t ^ { 2 } + 17 t + 57
ุณุคุงู„
Evaluate the indicated function for f(x)=x2โˆ’6f ( x ) = x ^ { 2 } - 6 and g(x)=x+4g ( x ) = x + 4 . ( fg )(1)

A)15
B)-35
C)-23
D)-25
E)-33
ุณุคุงู„
Find fโˆ˜gf \circ g .โ€‹ f(x)=โˆฃx2+1โˆฃg(x)=9โˆ’xf ( x ) = \left| x ^ { 2 } + 1 \right| \quad g ( x ) = 9 - x โ€‹

A) (fโˆ˜g)(x)=โˆฃx2โˆ’18x+82โˆฃ( f \circ g ) ( x ) = \left| x ^ { 2 } - 18 x + 82 \right|
B) (fโˆ˜g)(x)=โˆฃx2+82โˆฃ( f \circ g ) ( x ) = \left| x ^ { 2 } + 82 \right|
C) (fโˆ˜g)(x)=โˆฃ8โˆ’x2โˆฃ( f \circ g ) ( x ) = \left| 8 - x ^ { 2 } \right|
D) (fโˆ˜g)(x)=โˆฃ10โˆ’x2โˆฃ( f \circ g ) ( x ) = \left| 10 - x ^ { 2 } \right|
E) (fโˆ˜g)(x)=9โˆ’โˆฃx2+1โˆฃ( f \circ g ) ( x ) = 9 - \left| x ^ { 2 } + 1 \right|
ุณุคุงู„
Let f(x)=1x,g(x)=x+5f ( x ) = \frac { 1 } { x } , g ( x ) = x + 5 .Find the composite function which expresses the given correspondence correctly.โ€‹ 1x+5\frac { 1 } { x + 5 } โ€‹

A) (gโˆ˜g)(x)( g \circ g ) ( x )
B) (gโˆ˜f)(x)( g \circ f ) ( x )
C) (fโˆ˜f)(x)( f \circ f ) ( x )
D) (fโˆ˜g)(x)( f \circ g ) ( x )
E)none of the above
ุณุคุงู„
Let f (x)= x2 - 1,g (x)= 3x - 2.Find the value of the function.โ€‹ Let f (x)= x<sup>2</sup> - 1,g (x)= 3x - 2.Find the value of the function.โ€‹  <div style=padding-top: 35px>
ุณุคุงู„
Find ( f / g )(x). f(x)=x2โˆ’4xg(x)=7โˆ’xf ( x ) = x ^ { 2 } - 4 x \quad g ( x ) = 7 - x โ€‹

A) (f/g)(x)=x2โˆ’4x7โˆ’x,xโ‰ 0( f / g ) ( x ) = \frac { x ^ { 2 } - 4 x } { 7 - x } , x \neq 0
B) (f/g)(x)=xโˆ’47,xโ‰ 0( f / g ) ( x ) = \frac { x - 4 } { 7 } , x \neq 0
C) (f/g)(x)=x27+4,xโ‰ 0( f / g ) ( x ) = \frac { x ^ { 2 } } { 7 } + 4 , x \neq 0
D) (f/g)(x)=x2โˆ’4x7โˆ’x,xโ‰ 7( f / g ) ( x ) = \frac { x ^ { 2 } - 4 x } { 7 - x } , x \neq 7 โ€‹
E) (f/g)(x)=x2โˆ’4x7โˆ’x,xโ‰ โˆ’7( f / g ) ( x ) = \frac { x ^ { 2 } - 4 x } { 7 - x } , x \neq - 7
ุณุคุงู„
The monthly cost C of running the machinery in a factory for t hours is given byโ€‹ C(t)=40t+400C ( t ) = 40 t + 400 The number of hours t needed to produce x products is given by t(x)=6xt ( x ) = 6 x . Find the equation representing the cost C of manufacturing x products.

A) C(x)=46x+440C ( x ) = 46 x + 440
B) C(x)=240x+16,000C ( x ) = 240 x + 16,000
C) C(x)=40x+406C ( x ) = 40 x + 406
D) C(x)=46x+400C ( x ) = 46 x + 400
E) C(x)=240x+400C ( x ) = 240 x + 400 โ€‹
ุณุคุงู„
Let f (x)= 2x + 1,g (x)= 3x - 2.Find the functionLet f (x)= 2x + 1,g (x)= 3x - 2.Find the function  Please give the responce as a simplified expression (not an equation).<div style=padding-top: 35px>
Please give the responce as a simplified expression (not an equation).
ุณุคุงู„
Find ( f โˆ’ g )(x).โ€‹ f(x)=โˆ’6x7xโˆ’6g(x)=โˆ’4xf ( x ) = - \frac { 6 x } { 7 x - 6 } \quad g ( x ) = - \frac { 4 } { x }

A) (fโˆ’g)(x)=โˆ’6x+347xโˆ’6( f - g ) ( x ) = \frac { - 6 x + 34 } { 7 x - 6 }
B) (fโˆ’g)(x)=โˆ’6x2+28x+247x2โˆ’6x( f - g ) ( x ) = \frac { - 6 x ^ { 2 } + 28 x + 24 } { 7 x ^ { 2 } - 6 x }
C) (fโˆ’g)(x)=โˆ’3x+23xโˆ’3( f - g ) ( x ) = \frac { - 3 x + 2 } { 3 x - 3 }
D) (fโˆ’g)(x)=โˆ’6x2+28xโˆ’247x2โˆ’6x( f - g ) ( x ) = \frac { - 6 x ^ { 2 } + 28 x - 24 } { 7 x ^ { 2 } - 6 x }
E) (fโˆ’g)(x)=โˆ’6x+227xโˆ’6( f - g ) ( x ) = \frac { - 6 x + 22 } { 7 x - 6 }
ุณุคุงู„
Find gโˆ˜fg \circ f .โ€‹ f(x)=xโˆ’9g(x)=x2f ( x ) = x - 9 \quad g ( x ) = x ^ { 2 } โ€‹

A) (gโˆ˜f)(x)=x2โˆ’18x+81( g \circ f ) ( x ) = x ^ { 2 } - 18 x + 81
B) (gโˆ˜f)(x)=x2โˆ’81( g \circ f ) ( x ) = x ^ { 2 } - 81
C) (gโˆ˜f)(x)=x2โˆ’9x+81( g \circ f ) ( x ) = x ^ { 2 } - 9 x + 81 โ€‹
D) (gโˆ˜f)(x)=x2โˆ’9( g \circ f ) ( x ) = x ^ { 2 } - 9
E) (gโˆ˜f)(x)=x2+81( g \circ f ) ( x ) = x ^ { 2 } + 81
ุณุคุงู„
Find fโˆ˜gf \circ g .โ€‹ f(x)=x+3g(x)=1x2โˆ’9f ( x ) = x + 3 \quad g ( x ) = \frac { 1 } { x ^ { 2 } - 9 } โ€‹

A) (fโˆ˜g)(x)=1x2( f \circ g ) ( x ) = \frac { 1 } { x ^ { 2 } }
B) (fโˆ˜g)(x)=4x2โˆ’9( f \circ g ) ( x ) = \frac { 4 } { x ^ { 2 } - 9 }
C) (fโˆ˜g)(x)=3x2โˆ’2x2โˆ’9( f \circ g ) ( x ) = \frac { 3 x ^ { 2 } - 2 } { x ^ { 2 } - 9 }
D) (fโˆ˜g)(x)=1x2+6x( f \circ g ) ( x ) = \frac { 1 } { x ^ { 2 } + 6 x }
E) (fโˆ˜g)(x)=3x2โˆ’26x2โˆ’9( f \circ g ) ( x ) = \frac { 3 x ^ { 2 } - 26 } { x ^ { 2 } - 9 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ู‚ู… ุจุงู„ุชุณุฌูŠู„ ู„ูุชุญ ุงู„ุจุทุงู‚ุงุช ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ!
Unlock Deck
Unlock Deck
1/58
auto play flashcards
ุงู„ุนุจ
simple tutorial
ู…ู„ุก ุงู„ุดุงุดุฉ (f)
exit full mode
Deck 8: Combinations of Functions Composite Functions
1
โ€‹Find gโˆ˜gg \circ g .โ€‹ g(x)=xโˆ’2g ( x ) = x - 2 โ€‹

A) (xโˆ’2)2( x - 2 ) ^ { 2 }
B) x2โˆ’2x ^ { 2 } - 2
C) x+4x + 4
D) โˆ’xโˆ’4- x - 4
E) xโˆ’4x - 4
xโˆ’4x - 4
2
Find (fโˆ’g)(x)( f - g ) ( x ) .โ€‹ f(x)=x2+3,g(x)=5โˆ’xf ( x ) = x ^ { 2 } + 3 , g ( x ) = \sqrt { 5 - x } โ€‹

A) x2+3+5โˆ’xx ^ { 2 } + 3 + \sqrt { 5 - x }
B) x2โˆ’3+5โˆ’xx ^ { 2 } - 3 + \sqrt { 5 - x }
C) x2โˆ’3+5+xx ^ { 2 } - 3 + \sqrt { 5 + x }
D) x2+3โˆ’5โˆ’xx ^ { 2 } + 3 - \sqrt { 5 - x }
E) x2โˆ’3โˆ’5โˆ’xx ^ { 2 } - 3 - \sqrt { 5 - x }
x2+3โˆ’5โˆ’xx ^ { 2 } + 3 - \sqrt { 5 - x }
3
Find (fg)(x)( f g ) ( x ) .โ€‹ f(x)=1x2,g(x)=1x4f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = \frac { 1 } { x ^ { 4 } } โ€‹

A) 1x4\frac { 1 } { x ^ { 4 } }
B) 1x2\frac { 1 } { x ^ { 2 } }
C) 1x6\frac { 1 } { x ^ { 6 } }
D) x6x ^ { 6 }
E) x4x2\frac { x ^ { 4 } } { x ^ { 2 } }
1x6\frac { 1 } { x ^ { 6 } }
4
โ€‹Find gโˆ˜fg \circ f .โ€‹ f(x)=x2,g(x)=xโˆ’4f ( x ) = x ^ { 2 } , g ( x ) = x - 4 โ€‹ โ€‹

A) x2โˆ’4x ^ { 2 } - 4
B) x2x ^ { 2 }
C) (xโˆ’4)2( x - 4 ) ^ { 2 }
D) (x2+4)\left( x ^ { 2 } + 4 \right)
E) (x+4)2( x + 4 ) ^ { 2 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
5
Evaluate the indicated function for f(x)=x2+3f ( x ) = x ^ { 2 } + 3 and g(x)=xโˆ’4g ( x ) = x - 4 .โ€‹ (fโˆ’g)(3t)( f - g ) ( 3 t ) โ€‹ โ€‹

A) 9t2+3t+79 t ^ { 2 } + 3 t + 7
B) 6t+76 t + 7
C) 9t2+3tโˆ’79 t ^ { 2 } + 3 t - 7
D) 9t2โˆ’3tโˆ’79 t ^ { 2 } - 3 t - 7
E) 9t2โˆ’3t+79 t ^ { 2 } - 3 t + 7
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
6
Find (f + g)(x).โ€‹ f(x)=x2+4,g(x)=7โˆ’xf ( x ) = x ^ { 2 } + 4 , g ( x ) = \sqrt { 7 - x } โ€‹

A) x2+4โˆ’7โˆ’xx ^ { 2 } + 4 - \sqrt { 7 - x }
B) x2+4+7โˆ’xx ^ { 2 } + 4 + \sqrt { 7 - x }
C) x2โˆ’4+7+xx ^ { 2 } - 4 + \sqrt { 7 + x }
D) x2โˆ’4โˆ’7โˆ’xx ^ { 2 } - 4 - \sqrt { 7 - x }
E) x2โˆ’4+7โˆ’xx ^ { 2 } - 4 + \sqrt { 7 - x }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
7
Find (f / g)(x).What is the domain of f / g?โ€‹ f(x)=x2,g(x)=7xโˆ’3f ( x ) = x ^ { 2 } , g ( x ) = 7 x - 3 โ€‹

A) โˆ’x27xโˆ’3- \frac { x ^ { 2 } } { 7 x - 3 } ;all real numbers x.
B) 7x+3x2\frac { 7 x + 3 } { x ^ { 2 } } ;all real numbers x except x = 0
C) x27xโˆ’3\frac { x ^ { 2 } } { 7 x - 3 } ;all real numbers x except x = 37\frac { 3 } { 7 }
D) 7xโˆ’3x2\frac { 7 x - 3 } { x ^ { 2 } } ;all real numbers x except x = 0
E) x27x+3\frac { x ^ { 2 } } { 7 x + 3 } ;all real numbers x except x = 73\frac { 7 } { 3 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
8
Find (f + g)(x).โ€‹ f(x)=2xโˆ’3,g(x)=4โˆ’xf ( x ) = 2 x - 3 , g ( x ) = 4 - x โ€‹

A) 3xโˆ’13 x - 1
B) 2xโˆ’12 x - 1
C) 2x+12 x + 1
D) 3x+13 x + 1
E) x+1x + 1
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
9
โ€‹โ€‹โ€‹Evaluate the indicated function for f(x)=x2+6f ( x ) = x ^ { 2 } + 6 and g(x)=xโˆ’5g ( x ) = x - 5 .โ€‹ (f/g)(โˆ’4)โˆ’g(6)( f / g ) ( - 4 ) - g ( 6 ) โ€‹ โ€‹

A) โˆ’526- \frac { 5 } { 26 }
B) โˆ’319- \frac { 31 } { 9 }
C) โˆ’913- \frac { 9 } { 13 }
D) โˆ’139- \frac { 13 } { 9 }
E) โˆ’931- \frac { 9 } { 31 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
10
โ€‹โ€‹Evaluate the indicated function for f(x)=x2+5f ( x ) = x ^ { 2 } + 5 and g(x)=xโˆ’4g ( x ) = x - 4 .โ€‹ (f/g)(5)( f / g ) ( 5 ) โ€‹ โ€‹

A)30
B) 534\frac { 5 } { 34 }
C) 323\frac { 32 } { 3 }
D) 231\frac { 2 } { 31 }
E) 345\frac { 34 } { 5 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
11
Evaluate the indicated function for f(x)=x2+2f ( x ) = x ^ { 2 } + 2 and g(x)=xโˆ’4g ( x ) = x - 4 .โ€‹ (f+g)(3)( f + g ) ( 3 ) โ€‹

A)12
B)-10
C)7
D)14
E)10
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
12
Evaluate the indicated function for f(x)=x2+3f ( x ) = x ^ { 2 } + 3 and g(x)=xโˆ’6g ( x ) = x - 6 .โ€‹ (fโˆ’g)(0)( f - g ) ( 0 ) โ€‹ โ€‹

A)48
B)39
C)9
D)0
E)-39
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
13
Find (f + g)(x).โ€‹ f(x)=x+4,g(x)=xโˆ’4f ( x ) = x + 4 , g ( x ) = x - 4 โ€‹

A)2x
B)4x
C)-4x
D)-2x
E)2x + 8
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
14
โ€‹Evaluate the indicated function for f(x)=x2+5f ( x ) = x ^ { 2 } + 5 and g(x)=xโˆ’2g ( x ) = x - 2 .โ€‹ (fg)(5)( f g ) ( 5 ) โ€‹ โ€‹

A)92
B)90
C)-86
D)89
E)91
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
15
Find (f/g)(x)( f / g ) ( x ) .โ€‹ f(x)=1x2,g(x)=1x4f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = \frac { 1 } { x ^ { 4 } } โ€‹

A) 1x2\frac { 1 } { x ^ { 2 } }
B) x6x ^ { 6 }
C) 1x4\frac { 1 } { x ^ { 4 } } โ€‹
D) 1x6\frac { 1 } { x ^ { 6 } }
E) x2x ^ { 2 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
16
Find (f - g)(x).โ€‹ f(x)=2xโˆ’2,g(x)=4โˆ’xf ( x ) = 2 x - 2 , g ( x ) = 4 - x โ€‹

A) 3xโˆ’63 x - 6
B) 2x+62 x + 6
C) 2xโˆ’62 x - 6
D) xโˆ’6x - 6
E) 3x+63 x + 6
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
17
Find (f - g)(x).โ€‹ f(x)=x+3,g(x)=xโˆ’3f ( x ) = x + 3 , g ( x ) = x - 3 โ€‹

A)2x - 6
B)6
C)2x - 3
D)2x + 6
E)2x
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
18
Find (fg)(x).โ€‹ f(x)=x2,g(x)=7xโˆ’7f ( x ) = x ^ { 2 } , g ( x ) = 7 x - 7 โ€‹

A) 7x3+7x27 x ^ { 3 } + 7 x ^ { 2 }
B) 7x3โˆ’7x27 x ^ { 3 } - 7 x ^ { 2 }
C) 7x2โˆ’7x37 x ^ { 2 } - 7 x ^ { 3 }
D) 7x2+7x37 x ^ { 2 } + 7 x ^ { 3 }
E) 7xโˆ’7x27 x - 7 x ^ { 2 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
19
Find fโˆ˜gf \circ g .โ€‹ f(x)=x2,g(x)=xโˆ’2f ( x ) = x ^ { 2 } , g ( x ) = x - 2 โ€‹

A) x2x ^ { 2 }
B) (xโˆ’2)2( x - 2 ) ^ { 2 }
C) (x+2)2( x + 2 ) ^ { 2 }
D) (x2โˆ’2)\left( x ^ { 2 } - 2 \right)
E) (x2+2)\left( x ^ { 2 } + 2 \right)
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
20
Evaluate the indicated function for f(x)=x2+2f ( x ) = x ^ { 2 } + 2 and g(x)=xโˆ’6g ( x ) = x - 6 .โ€‹ (fโˆ’g)(โˆ’5)( f - g ) ( - 5 ) โ€‹ โ€‹

A)28
B)38
C)-38
D)125
E)17
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
21
The number N of bacteria in a refrigerated food is given by N(T)=10T2โˆ’20T+600,1โ‰คTโ‰ค20N ( T ) = 10 T ^ { 2 } - 20 T + 600,1 \leq T \leq 20 where T is the temperature of the food in degrees Celsius.When the food is removed from refrigeration,the temperature of the food is given by T(t)=3t+2,0โ‰คtโ‰ค6T ( t ) = 3 t + 2,0 \leq t \leq 6 where t is the time in hours. Find the bacteria count after 0.5 hour.
โ€‹

A)About 565 bacteria
B)About 793 bacteria
C)About 653 bacteria
D)About 390 bacteria
E)About 705 bacteria
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
22
Determine whether the statement is true or false. โ€‹
If f(x)= x + 1 and g(x)= 5x,then (fโˆ˜g)(x)=(gโˆ˜f)(x)( f \circ g ) ( x ) = ( g \circ f ) ( x ) .
โ€‹

A)False
B)True
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
23
Consider the functions f(x)=x3f ( x ) = x ^ { 3 } and g(x)=xg ( x ) = \sqrt { x } . โ€‹
Find f/gf / g .
โ€‹

A) x3xx ^ { 3 } \sqrt { x }
B) xx2\frac { \sqrt { x } } { x ^ { 2 } }
C) xx3\frac { \sqrt { x } } { x ^ { 3 } }
D) x2xx\frac { x ^ { 2 } \sqrt { x } } { x }
E) x2xx ^ { 2 } \sqrt { x }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
24
Find fโˆ˜gf \circ g and the domain of the composite function.โ€‹ f(x)=1x,g(x)=x+7f ( x ) = \frac { 1 } { x } , g ( x ) = x + 7 โ€‹

A) 1x+7\frac { 1 } { x } + 7 Domain of fโˆ˜gf \circ g : all real numbers x except x=0x = 0
B) โˆ’1x+7- \frac { 1 } { x + 7 } Domain of fโˆ˜gf \circ g : all real numbers x except x=โˆ’7x = - 7
C) 1x+7\frac { 1 } { x + 7 } Domain of fโˆ˜gf \circ g : all real numbers x except x=โˆ’7x = - 7
D) 1xโˆ’7\frac { 1 } { x } - 7 Domain of fโˆ˜gf \circ g : all real numbers x except x=0x = 0
E) 1xโˆ’7\frac { 1 } { x - 7 } Domain of fโˆ˜gf \circ g : all real numbers x except x=7x = 7
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
25
Find gโˆ˜fg \circ f and the domain of the composite function.โ€‹ f(x)=x2+4,g(x)=xf ( x ) = x ^ { 2 } + 4 , g ( x ) = \sqrt { x } โ€‹

A) (x+4)4( x + 4 ) ^ { 4 } Domain of gโˆ˜fg \circ f : all real numbers x
B) (xโˆ’4)4( x - 4 ) ^ { 4 } Domain of gโˆ˜fg \circ f : all real numbers x
C) x2+4\sqrt { x ^ { 2 } + 4 } Domain of gโˆ˜fg \circ f : all real numbers x
D) (xโˆ’4)4\sqrt { ( x - 4 ) ^ { 4 } } Domain of gโˆ˜fg \circ f : all real numbers x
E) (x+4)4\sqrt { ( x + 4 ) ^ { 4 } } Domain of gโˆ˜fg \circ f : all real numbers x
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
26
A pebble is dropped into a calm pond,causing ripples in the form of concentric circles.The radius (in feet)of the outer ripple is r(t)=0.2tr ( t ) = 0.2 t ,where t is the time in seconds after the pebble strikes the water.The area of the circle is given by the function A(r)=ฯ€r2A ( r ) = \pi r ^ { 2 } .Find and interpret (Aโˆ˜r)(t)( A \circ r ) ( t ) . โ€‹

A) (Aโˆ˜r)(t)=0.2ฯ€t( A \circ r ) ( t ) = 0.2 \pi t ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
B) (Aโˆ˜r)(t)=0.2ฯ€t2( A \circ r ) ( t ) = 0.2 \pi t ^ { 2 } ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
C) (Aโˆ˜r)(t)=0.04ฯ€t( A \circ r ) ( t ) = 0.04 \pi t ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
D) (Aโˆ˜r)(t)=0.04ฯ€t2( A \circ r ) ( t ) = 0.04 \pi t ^ { 2 } ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
E) (Aโˆ˜r)(t)=0.04ฯ€t3( A \circ r ) ( t ) = 0.04 \pi t ^ { 3 } ; (Aโˆ˜r)(t)( A \circ r ) ( t ) represents the area of the circle at time t.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
27
From 2003 through 2008,the sales R1R _ { 1 } (in thousands of dollars)for one of two restaurants owned by the same parent company can be modeled byโ€‹ R1=480โˆ’6tโˆ’0.6t2,t=3,4,5,6,7,8R _ { 1 } = 480 - 6 t - 0.6 t ^ { 2 } , t = 3,4,5,6,7,8 โ€‹ where t = 3 represents 2003.During the same six-year period,the sales R2R _ { 2 } (in thousands of dollars)for the second restaurant can be modeled byโ€‹ R2=259+0.77t,t=3,4,5,6,7,8R _ { 2 } = 259 + 0.77 t , t = 3,4,5,6,7,8 โ€‹
Write a function R3R _ { 3 } that represents the total sales of the two restaurants owned by the same parent company.
โ€‹

A)โ€‹ R3=739โˆ’5.23t2โˆ’0.6tR _ { 3 } = 739 - 5.23 t ^ { 2 } - 0.6 t
B)โ€‹ R3=739โˆ’5.23t+0.6t2R _ { 3 } = 739 - 5.23 t + 0.6 t ^ { 2 }
C)โ€‹ R3=221โˆ’6.77t2โˆ’0.6tR _ { 3 } = 221 - 6.77 t ^ { 2 } - 0.6 t
D)โ€‹ R3=739โˆ’5.23t2+0.6tR _ { 3 } = 739 - 5.23 t ^ { 2 } + 0.6 t
E)โ€‹ R3=739โˆ’5.23tโˆ’0.6t2R _ { 3 } = 739 - 5.23 t - 0.6 t ^ { 2 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
28
The spread of a contaminant is increasing in a circular pattern on the surface of a lake.The radius of the contaminant can be modeled by r(t)=2.25tr ( t ) = 2.25 \sqrt { t } ,where r is the radius in meters and t is the time in hours since contamination. โ€‹
Find a function that gives the area A of the circular lake in terms of the time since the spread began.
โ€‹

A) Aโˆ˜r(t)=5.0625ฯ€tA \circ r ( t ) = 5.0625 \pi \sqrt { t }
B) Aโˆ˜r(t)=2.25ฯ€tA \circ r ( t ) = 2.25 \pi t
C) Aโˆ˜r(t)=5.0625tA \circ r ( t ) = 5.0625 t
D) Aโˆ˜r(t)=5.0625tA \circ r ( t ) = 5.0625 \sqrt { t }
E) Aโˆ˜r(t)=5.0625ฯ€tA \circ r ( t ) = 5.0625 \pi t
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
29
โ€‹Find gโˆ˜fg \circ f and the domain of the composite function.โ€‹ f(x)=1x,g(x)=x+5f ( x ) = \frac { 1 } { x } , g ( x ) = x + 5 โ€‹

A) 1x+5\frac { 1 } { x + 5 } Domain of gโˆ˜fg \circ f : all real numbers x except x=โˆ’5x = - 5
B) 1xโˆ’5\frac { 1 } { x } - 5 Domain of gโˆ˜fg \circ f : all real numbers x except x=0x = 0
C) 1x+5\frac { 1 } { x } + 5 Domain of gโˆ˜fg \circ f : all real numbers x except x=0x = 0
D) โˆ’1x+5- \frac { 1 } { x + 5 } Domain of gโˆ˜fg \circ f : all real numbers x except x=โˆ’3x = - 3
E) 1xโˆ’5\frac { 1 } { x - 5 } Domain of gโˆ˜fg \circ f : all real numbers x except x=5x = 5
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
30
Find fโˆ˜gf \circ g and the domain of the composite function.โ€‹ f(x)=โˆฃxโˆฃ,g(x)=x+3f ( x ) = | x | , g ( x ) = x + 3 โ€‹

A) โˆฃ(xโˆ’3)3โˆฃ\left| ( x - 3 ) ^ { 3 } \right| Domain of fโˆ˜gf \circ g : all real numbers x
B) (x+3)3\sqrt { ( x + 3 ) ^ { 3 } } Domain of fโˆ˜gf \circ g : all real numbers x
C) โˆฃx+3โˆฃ| x + 3 | Domain of fโˆ˜gf \circ g : all real numbers x
D) โˆฃ(x+3)3โˆฃ\left| ( x + 3 ) ^ { 3 } \right| Domain of fโˆ˜gf \circ g : all real numbers x
E) โˆฃxโˆ’3โˆฃ| x - 3 | Domain of fโˆ˜gf \circ g : all real numbers x
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
31
The suggested retail price of a new hybrid car is p dollars.The dealership advertises a factory rebate of $2000 .
โ€‹
Select a function R in terms of p giving the cost of the hybrid car after receiving the rebate from the factory.
โ€‹

A) R(p)=2000โˆ’pR ( p ) = 2000 - p
B) R(p)=pโˆ’2000R ( p ) = p - 2000
C) R(p)=p+2000R ( p ) = p + 2000
D) R(p)=p+1000R ( p ) = p + 1000
E) R(p)=pโˆ’1000R ( p ) = p - 1000
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
32
The weekly cost C of producing units x in a manufacturing process is given by C(x)=30x+750C ( x ) = 30 x + 750 .The number of units x produced in t hours is given by x(t)=70tx ( t ) = 70 t . โ€‹
Find the cost of the units produced in 6 hours.
โ€‹

A)11,855
B)11,850
C)11,846
D)13,350
E)11,854
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
33
Find gโˆ˜fg \circ f and the domain of the composite function.โ€‹ f(x)=โˆฃxโˆฃ,g(x)=x+4f ( x ) = | x | , g ( x ) = x + 4 โ€‹ โ€‹

A) โˆฃxโˆ’4โˆฃ| x - 4 | Domain of gโˆ˜fg \circ f : all real numbers x
B) xโˆ’โˆฃ4โˆฃx - | 4 | Domain of gโˆ˜fg \circ f : all real numbers x
C) โˆฃxโˆฃโˆ’4| x | - 4 Domain of gโˆ˜fg \circ f : all real numbers x
D) โˆฃxโˆฃ+4| x | + 4 Domain of gโˆ˜fg \circ f : all real numbers x
E) โˆฃx+4โˆฃ| x + 4 | Domain of gโˆ˜fg \circ f : all real numbers x
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
34
The number of people playing tennis T (in millions)in the United States from 2000 through 2007 can be approximated by the functionโ€‹ T(t)=0.0235t4โˆ’0.3401t3+2.556t2โˆ’6.86t+23.8T ( t ) = 0.0235 t ^ { 4 } - 0.3401 t ^ { 3 } + 2.556 t ^ { 2 } - 6.86 t + 23.8 โ€‹ and the U.S.population P (in millions)from 2000 through 2007 can be approximated by the function P(t)=5.8t+224.5P ( t ) = 5.8 t + 224.5 ,where t represents the year,with t = 0 corresponding to 2000.
Evaluate the function h(t)=0.0235t4โˆ’0.3401t3+2.556t2โˆ’6.86t+23.85.8t+224.5h ( t ) = \frac { 0.0235 t ^ { 4 } - 0.3401 t ^ { 3 } + 2.556 t ^ { 2 } - 6.86 t + 23.8 } { 5.8 t + 224.5 } for t = 0 and 3.

A)h(0)= 0.1060,h(3)= 0.0783
B)h(0)= 0.3060,h(3)= 0.2783
C)h(0)= -0.2060,h(3)= -0.1783
D)h(0)= 0.1783,h(3)= 0.2060
E)h(0)= -0.1060,h(3)= -0.0783
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
35
The total numbers of Navy personnel N (in thousands)and Marines personnel M (in thousands)from 2000 through 2007 can be approximated by the modelsโ€‹ N(t)=0.194t3โˆ’7.88t2+12.9t+375N ( t ) = 0.194 t ^ { 3 } - 7.88 t ^ { 2 } + 12.9 t + 375 and M(t)=0.031t3โˆ’0.25t2+6.7t+173M ( t ) = 0.031 t ^ { 3 } - 0.25 t ^ { 2 } + 6.7 t + 173 โ€‹ where t represents the year,with t = 0 corresponding to 2000.
Find and interpret (Nโˆ’M)(t)( N - M ) ( t ) .
โ€‹

A) (Nโˆ’M)(t)=0.163t3+7.63t2โˆ’6.2t+202( N - M ) ( t ) = 0.163 t ^ { 3 } + 7.63 t ^ { 2 } - 6.2 t + 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
B) (Nโˆ’M)(t)=0.163t3โˆ’7.63t2โˆ’6.2tโˆ’202( N - M ) ( t ) = 0.163 t ^ { 3 } - 7.63 t ^ { 2 } - 6.2 t - 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
C) (Nโˆ’M)(t)=0.163t3โˆ’7.63t2โˆ’6.2t+202( N - M ) ( t ) = 0.163 t ^ { 3 } - 7.63 t ^ { 2 } - 6.2 t + 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
D) (Nโˆ’M)(t)=0.163t3+7.63t2+6.2t+202( N - M ) ( t ) = 0.163 t ^ { 3 } + 7.63 t ^ { 2 } + 6.2 t + 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
E) (Nโˆ’M)(t)=0.163t3โˆ’7.63t2+6.2t+202( N - M ) ( t ) = 0.163 t ^ { 3 } - 7.63 t ^ { 2 } + 6.2 t + 202 ,which represents the difference between the number of Navy personnel and the number of Marines personnel.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
36
The number of people playing tennis T (in millions)in the United States from 2000 through 2007 can be approximated by the functionโ€‹ T(t)=0.0236t4โˆ’0.3401t3+6.556t2โˆ’2.86t+26.8T ( t ) = 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } + 6.556 t ^ { 2 } - 2.86 t + 26.8 โ€‹ and the U.S.population P (in millions)from 2000 through 2007 can be approximated by the function P(t)=5.78t+221.5P ( t ) = 5.78 t + 221.5 ,where t represents the year,with t = 0 corresponding to 2000.
Find h(t)=T(t)P(t)h ( t ) = \frac { T ( t ) } { P ( t ) } .
โ€‹

A) h(t)=0.0236t4โˆ’0.3401t3โˆ’6.556t2โˆ’2.86t+26.85.78t+221.5h ( t ) = \frac { 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } - 6.556 t ^ { 2 } - 2.86 t + 26.8 } { 5.78 t + 221.5 } โ€‹
B) h(t)=0.0236t4โˆ’0.3401t3+6.556t2โˆ’2.86t+26.85.78t+221.5h ( t ) = \frac { 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } + 6.556 t ^ { 2 } - 2.86 t + 26.8 } { 5.78 t + 221.5 } โ€‹
C) h(t)=0.0236t4โˆ’0.3401t3โˆ’6.556t2โˆ’2.86tโˆ’26.85.78tโˆ’221.5h ( t ) = \frac { 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } - 6.556 t ^ { 2 } - 2.86 t - 26.8 } { 5.78 t - 221.5 }
D) h(t)=0.0236t4โˆ’0.3401t3+6.556t2โˆ’2.86t+26.85.78tโˆ’221.5h ( t ) = \frac { 0.0236 t ^ { 4 } - 0.3401 t ^ { 3 } + 6.556 t ^ { 2 } - 2.86 t + 26.8 } { 5.78 t - 221.5 } โ€‹
E) h(t)=0.0236t4+0.3401t3+6.556t2โˆ’2.86t+26.85.78t+221.5h ( t ) = \frac { 0.0236 t ^ { 4 } + 0.3401 t ^ { 3 } + 6.556 t ^ { 2 } - 2.86 t + 26.8 } { 5.78 t + 221.5 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
37
The total numbers of Navy personnel N (in thousands)and Marines personnel M (in thousands)from 2000 through 2007 can be approximated by the modelsโ€‹ N(t)=0.193t3โˆ’3.88t2+15.9t+370N ( t ) = 0.193 t ^ { 3 } - 3.88 t ^ { 2 } + 15.9 t + 370 and M(t)=0.033t3โˆ’0.21t2+1.7t+171M ( t ) = 0.033 t ^ { 3 } - 0.21 t ^ { 2 } + 1.7 t + 171 โ€‹ where t represents the year,with t = 0 corresponding to 2000.
โ€‹
Find and interpret (N+M)(t)( N + M ) ( t ) .
โ€‹

A) (N+M)(t)=0.226t3+4.09t2โˆ’17.6tโˆ’541( N + M ) ( t ) = 0.226 t ^ { 3 } + 4.09 t ^ { 2 } - 17.6 t - 541 ,which represents the total number of Navy and Marines personnel combined.
B) (N+M)(t)=0.226t3+4.09t2+17.6t+541( N + M ) ( t ) = 0.226 t ^ { 3 } + 4.09 t ^ { 2 } + 17.6 t + 541 ,which represents the total number of Navy and Marines personnel combined.
C) (N+M)(t)=0.226t3โˆ’4.09t2โˆ’17.6tโˆ’541( N + M ) ( t ) = 0.226 t ^ { 3 } - 4.09 t ^ { 2 } - 17.6 t - 541 ,which represents the total number of Navy and Marines personnel combined.
D) (N+M)(t)=0.226t3โˆ’4.09t2+17.6t+541( N + M ) ( t ) = 0.226 t ^ { 3 } - 4.09 t ^ { 2 } + 17.6 t + 541 ,which represents the total number of Navy and Marines personnel combined.
E) (N+M)(t)=0.226t2โˆ’4.09t3โˆ’17.6t+541( N + M ) ( t ) = 0.226 t ^ { 2 } - 4.09 t ^ { 3 } - 17.6 t + 541 ,which represents the total number of Navy and Marines personnel combined.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
38
The research and development department of an automobile manufacturer has determined that when a driver is required to stop quickly to avoid an accident,the distance (in feet)the car travels during the driver's reaction time is given by R(x)=52xR ( x ) = \frac { 5 } { 2 } x ,where x is the speed of the car in miles per hour.The distance (in feet)traveled while the driver is braking is given by B(x)=111x2B ( x ) = \frac { 1 } { 11 } x ^ { 2 } .Find the function that represents the total stopping distance T. โ€‹

A) T=โˆ’52x+111x2T = - \frac { 5 } { 2 } x + \frac { 1 } { 11 } x ^ { 2 }
B) T=52xโˆ’111x2T = \frac { 5 } { 2 } x - \frac { 1 } { 11 } x ^ { 2 }
C) T=52x2+111x2T = \frac { 5 } { 2 } x ^ { 2 } + \frac { 1 } { 11 } x ^ { 2 }
D) T=โˆ’52xโˆ’111x2T = - \frac { 5 } { 2 } x - \frac { 1 } { 11 } x ^ { 2 }
E) T=52x+111x2T = \frac { 5 } { 2 } x + \frac { 1 } { 11 } x ^ { 2 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
39
Find fโˆ˜gf \circ g and the domain of the composite function.โ€‹ f(x)=x+5,g(x)=x2f ( x ) = \sqrt { x + 5 } , g ( x ) = x ^ { 2 } โ€‹

A) (x+5)2( x + 5 ) ^ { 2 } Domain of fโˆ˜gf \circ g : all real numbers x
B) x2+5\sqrt { x ^ { 2 } + 5 } Domain of fโˆ˜gf \circ g : all real numbers x
C) โˆ’(x+5)2- \sqrt { ( x + 5 ) ^ { 2 } } Domain of fโˆ˜gf \circ g : all real numbers x
D) (xโˆ’5)2( x - 5 ) ^ { 2 } Domain of fโˆ˜gf \circ g : all real numbers x
E) (xโˆ’5)2\sqrt { ( x - 5 ) ^ { 2 } } Domain of fโˆ˜gf \circ g : all real numbers x
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
40
Find (f + g)(x).โ€‹โ€‹ f(x)=x2โˆ’2xโˆ’1g(x)=โˆ’3x2+xโˆ’1\begin{array} { l } f ( x ) = x ^ { 2 } - 2 x - 1 \\g ( x ) = - 3 x ^ { 2 } + x - 1\end{array} โ€‹ โ€‹

A)โ€‹ (f+g)(x)=4x4โˆ’3x2( f + g ) ( x ) = 4 x ^ { 4 } - 3 x ^ { 2 }
B)โ€‹ (f+g)(x)=2x2โˆ’x+2( f + g ) ( x ) = 2 x ^ { 2 } - x + 2
C)โ€‹ (f+g)(x)=โˆ’2x4โˆ’x2โˆ’2( f + g ) ( x ) = - 2 x ^ { 4 } - x ^ { 2 } - 2
D)โ€‹ (f+g)(x)=4x2โˆ’3x( f + g ) ( x ) = 4 x ^ { 2 } - 3 x
E)โ€‹ (f+g)(x)=โˆ’2x2โˆ’xโˆ’2( f + g ) ( x ) = - 2 x ^ { 2 } - x - 2
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
41
Let Let   .Find the composite function.โ€‹  .Find the composite function.โ€‹ Let   .Find the composite function.โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
42
Let f (x)= 2x + 1,g(x)= 3x - 2.Find the function.โ€‹ (fโˆ’g)(x)( f - g ) ( x ) โ€‹

A) (fโˆ’g)(x)=2x+13xโˆ’2( f - g ) ( x ) = \frac { 2 x + 1 } { 3 x - 2 }
B) (fโˆ’g)(x)=3โˆ’x( f - g ) ( x ) = 3 - x
C) (fโˆ’g)(x)=6x2โˆ’xโˆ’2( f - g ) ( x ) = 6 x ^ { 2 } - x - 2
D) (fโˆ’g)(x)=5xโˆ’1( f - g ) ( x ) = 5 x - 1
E)none of the above
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
43
Let f (x)= 2x - 1,g(x)= 3x - 2.Find the domain of the function.โ€‹ (f+g)(x)( f + g ) ( x ) โ€‹

A) (โˆ’โˆž,โˆž)( - \infty , \infty )
B) [0,โˆž)[ 0 , \infty )
C) (โˆ’โˆž,0]( - \infty , 0 ]
D) (โˆ’โˆž,0)( - \infty , 0 )
E) (0,โˆž)( 0 , \infty )
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
44
Use the graphs of f and g to evaluate the function.  <strong>Use the graphs of f and g to evaluate the function.      ( f \circ g ) ( 3 ) </strong> A)1 B)-2 C)4 D)-1 E)2   <strong>Use the graphs of f and g to evaluate the function.      ( f \circ g ) ( 3 ) </strong> A)1 B)-2 C)4 D)-1 E)2  (fโˆ˜g)(3)( f \circ g ) ( 3 )

A)1
B)-2
C)4
D)-1
E)2
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
45
Find fโˆ˜gf \circ g . f(x)=โˆ’2xโˆ’9g(x)=x+5f ( x ) = - 2 x - 9 \quad g ( x ) = x + 5

A) (fโˆ˜g)(x)=โˆ’2xโˆ’19( f \circ g ) ( x ) = - 2 x - 19
B) (fโˆ˜g)(x)=โˆ’3xโˆ’14( f \circ g ) ( x ) = - 3 x - 14
C) (fโˆ˜g)(x)=โˆ’2x2โˆ’19xโˆ’45( f \circ g ) ( x ) = - 2 x ^ { 2 } - 19 x - 45
D) (fโˆ˜g)(x)=โˆ’3xโˆ’4( f \circ g ) ( x ) = - 3 x - 4
E) (fโˆ˜g)(x)=โˆ’2xโˆ’4( f \circ g ) ( x ) = - 2 x - 4
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
46
Find ( fg )(x). f(x)=3xg(x)=5x+7f ( x ) = \sqrt { 3 x } \quad g ( x ) = \sqrt { 5 x + 7 }

A) (fg)(x)=8x+7( f g ) ( x ) = \sqrt { 8 x + 7 }
B) (fg)(x)=15x2+7( f g ) ( x ) = \sqrt { 15 x ^ { 2 } + 7 }
C) (fg)(x)=15x2+21x( f g ) ( x ) = \sqrt { 15 x ^ { 2 } + 21 x }
D) (fg)(x)=x15+21x( f g ) ( x ) = x \sqrt { 15 } + \sqrt { 21 x }
E) (fg)(x)=x15+21x( f g ) ( x ) = x \sqrt { 15 + 21 x }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
47
Let f (x)= 3x,g (x)= x + 1.Find the composite function. โ€‹โ€‹ Let f (x)= 3x,g (x)= x + 1.Find the composite function. โ€‹โ€‹   โ€‹ Please give the respnce as an expression (not an equation). โ€‹
Please give the respnce as an expression (not an equation).
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
48
Evaluate the indicated function for f(x)=x2โˆ’7f ( x ) = x ^ { 2 } - 7 and g(x)=x+8g ( x ) = x + 8 .โ€‹ (fโˆ’g)(t+8)( f - g ) ( t + 8 )

A)โ€‹ t2+15t+57t ^ { 2 } + 15 t + 57
B)โ€‹ t2+15t+41t ^ { 2 } + 15 t + 41
C)โ€‹ t2+17t+41t ^ { 2 } + 17 t + 41
D)โ€‹ t2โˆ’t+41t ^ { 2 } - t + 41
E)โ€‹ t2+17t+57t ^ { 2 } + 17 t + 57
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
49
Evaluate the indicated function for f(x)=x2โˆ’6f ( x ) = x ^ { 2 } - 6 and g(x)=x+4g ( x ) = x + 4 . ( fg )(1)

A)15
B)-35
C)-23
D)-25
E)-33
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
50
Find fโˆ˜gf \circ g .โ€‹ f(x)=โˆฃx2+1โˆฃg(x)=9โˆ’xf ( x ) = \left| x ^ { 2 } + 1 \right| \quad g ( x ) = 9 - x โ€‹

A) (fโˆ˜g)(x)=โˆฃx2โˆ’18x+82โˆฃ( f \circ g ) ( x ) = \left| x ^ { 2 } - 18 x + 82 \right|
B) (fโˆ˜g)(x)=โˆฃx2+82โˆฃ( f \circ g ) ( x ) = \left| x ^ { 2 } + 82 \right|
C) (fโˆ˜g)(x)=โˆฃ8โˆ’x2โˆฃ( f \circ g ) ( x ) = \left| 8 - x ^ { 2 } \right|
D) (fโˆ˜g)(x)=โˆฃ10โˆ’x2โˆฃ( f \circ g ) ( x ) = \left| 10 - x ^ { 2 } \right|
E) (fโˆ˜g)(x)=9โˆ’โˆฃx2+1โˆฃ( f \circ g ) ( x ) = 9 - \left| x ^ { 2 } + 1 \right|
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
51
Let f(x)=1x,g(x)=x+5f ( x ) = \frac { 1 } { x } , g ( x ) = x + 5 .Find the composite function which expresses the given correspondence correctly.โ€‹ 1x+5\frac { 1 } { x + 5 } โ€‹

A) (gโˆ˜g)(x)( g \circ g ) ( x )
B) (gโˆ˜f)(x)( g \circ f ) ( x )
C) (fโˆ˜f)(x)( f \circ f ) ( x )
D) (fโˆ˜g)(x)( f \circ g ) ( x )
E)none of the above
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
52
Let f (x)= x2 - 1,g (x)= 3x - 2.Find the value of the function.โ€‹ Let f (x)= x<sup>2</sup> - 1,g (x)= 3x - 2.Find the value of the function.โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
53
Find ( f / g )(x). f(x)=x2โˆ’4xg(x)=7โˆ’xf ( x ) = x ^ { 2 } - 4 x \quad g ( x ) = 7 - x โ€‹

A) (f/g)(x)=x2โˆ’4x7โˆ’x,xโ‰ 0( f / g ) ( x ) = \frac { x ^ { 2 } - 4 x } { 7 - x } , x \neq 0
B) (f/g)(x)=xโˆ’47,xโ‰ 0( f / g ) ( x ) = \frac { x - 4 } { 7 } , x \neq 0
C) (f/g)(x)=x27+4,xโ‰ 0( f / g ) ( x ) = \frac { x ^ { 2 } } { 7 } + 4 , x \neq 0
D) (f/g)(x)=x2โˆ’4x7โˆ’x,xโ‰ 7( f / g ) ( x ) = \frac { x ^ { 2 } - 4 x } { 7 - x } , x \neq 7 โ€‹
E) (f/g)(x)=x2โˆ’4x7โˆ’x,xโ‰ โˆ’7( f / g ) ( x ) = \frac { x ^ { 2 } - 4 x } { 7 - x } , x \neq - 7
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
54
The monthly cost C of running the machinery in a factory for t hours is given byโ€‹ C(t)=40t+400C ( t ) = 40 t + 400 The number of hours t needed to produce x products is given by t(x)=6xt ( x ) = 6 x . Find the equation representing the cost C of manufacturing x products.

A) C(x)=46x+440C ( x ) = 46 x + 440
B) C(x)=240x+16,000C ( x ) = 240 x + 16,000
C) C(x)=40x+406C ( x ) = 40 x + 406
D) C(x)=46x+400C ( x ) = 46 x + 400
E) C(x)=240x+400C ( x ) = 240 x + 400 โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
55
Let f (x)= 2x + 1,g (x)= 3x - 2.Find the functionLet f (x)= 2x + 1,g (x)= 3x - 2.Find the function  Please give the responce as a simplified expression (not an equation).
Please give the responce as a simplified expression (not an equation).
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
56
Find ( f โˆ’ g )(x).โ€‹ f(x)=โˆ’6x7xโˆ’6g(x)=โˆ’4xf ( x ) = - \frac { 6 x } { 7 x - 6 } \quad g ( x ) = - \frac { 4 } { x }

A) (fโˆ’g)(x)=โˆ’6x+347xโˆ’6( f - g ) ( x ) = \frac { - 6 x + 34 } { 7 x - 6 }
B) (fโˆ’g)(x)=โˆ’6x2+28x+247x2โˆ’6x( f - g ) ( x ) = \frac { - 6 x ^ { 2 } + 28 x + 24 } { 7 x ^ { 2 } - 6 x }
C) (fโˆ’g)(x)=โˆ’3x+23xโˆ’3( f - g ) ( x ) = \frac { - 3 x + 2 } { 3 x - 3 }
D) (fโˆ’g)(x)=โˆ’6x2+28xโˆ’247x2โˆ’6x( f - g ) ( x ) = \frac { - 6 x ^ { 2 } + 28 x - 24 } { 7 x ^ { 2 } - 6 x }
E) (fโˆ’g)(x)=โˆ’6x+227xโˆ’6( f - g ) ( x ) = \frac { - 6 x + 22 } { 7 x - 6 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
57
Find gโˆ˜fg \circ f .โ€‹ f(x)=xโˆ’9g(x)=x2f ( x ) = x - 9 \quad g ( x ) = x ^ { 2 } โ€‹

A) (gโˆ˜f)(x)=x2โˆ’18x+81( g \circ f ) ( x ) = x ^ { 2 } - 18 x + 81
B) (gโˆ˜f)(x)=x2โˆ’81( g \circ f ) ( x ) = x ^ { 2 } - 81
C) (gโˆ˜f)(x)=x2โˆ’9x+81( g \circ f ) ( x ) = x ^ { 2 } - 9 x + 81 โ€‹
D) (gโˆ˜f)(x)=x2โˆ’9( g \circ f ) ( x ) = x ^ { 2 } - 9
E) (gโˆ˜f)(x)=x2+81( g \circ f ) ( x ) = x ^ { 2 } + 81
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
58
Find fโˆ˜gf \circ g .โ€‹ f(x)=x+3g(x)=1x2โˆ’9f ( x ) = x + 3 \quad g ( x ) = \frac { 1 } { x ^ { 2 } - 9 } โ€‹

A) (fโˆ˜g)(x)=1x2( f \circ g ) ( x ) = \frac { 1 } { x ^ { 2 } }
B) (fโˆ˜g)(x)=4x2โˆ’9( f \circ g ) ( x ) = \frac { 4 } { x ^ { 2 } - 9 }
C) (fโˆ˜g)(x)=3x2โˆ’2x2โˆ’9( f \circ g ) ( x ) = \frac { 3 x ^ { 2 } - 2 } { x ^ { 2 } - 9 }
D) (fโˆ˜g)(x)=1x2+6x( f \circ g ) ( x ) = \frac { 1 } { x ^ { 2 } + 6 x }
E) (fโˆ˜g)(x)=3x2โˆ’26x2โˆ’9( f \circ g ) ( x ) = \frac { 3 x ^ { 2 } - 26 } { x ^ { 2 } - 9 }
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
locked card icon
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 58 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.