Deck 20: Properties of Logarithms

ملء الشاشة (f)
exit full mode
سؤال
Rewrite the logarithm as a ratio of natural logarithms. ?
Log5 19
?

A) ln519\ln \frac { 5 } { 19 }
B) ln195\ln \frac { 19 } { 5 }
C) ln5ln19\frac { \ln 5 } { \ln 19 }
D) ln19ln5\frac { \ln 19 } { \ln 5 }
E)None of these
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Rewrite the logarithm as a ratio of common logarithms. ?
Log5 16
?

A) log16log5\frac { \log 16 } { \log 5 }
B) log165\log \frac { 16 } { 5 }
C) log5log16\frac { \log 5 } { \log 16 }
D) log516\log \frac { 5 } { 16 }
E)None of these
سؤال
Rewrite the logarithm as a ratio of natural logarithms. ?
Log1/5 x
?

A) lnx5\ln \frac { x } { 5 }
B) ln15lnx\frac { \ln \frac { 1 } { 5 } } { \ln x }
C) lnxln15\frac { \ln x } { \ln \frac { 1 } { 5 } }
D) ln5x\ln 5 x
E)None of these
سؤال
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. ) ?
Log 5x4y
?

A)log 5 × 4log x × log y
B)log 5 + 4log x - log y
C)log 5 + log x + 4log y
D)log 5 + 4log x + log y
E) log54(logx+logy)\frac { \log 5 } { 4 ( \log x + \log y ) }
سؤال
Rewrite the logarithm as a ratio of common logarithms. ?
Log1/7 x
?

A) logxlog17\frac { \log x } { \log \frac { 1 } { 7 } }
B) log17logx\frac { \log \frac { 1 } { 7 } } { \log x }
C) logx7\log \frac { x } { 7 }
D) log7x\log 7 x
E)None of these
سؤال
Rewrite the logarithm as a ratio of common logarithms. ?
Log2.7 x
?

A) log2.7logx\frac { \log 2.7 } { \log x }
B)? logxlog2.7\frac { \log x } { \log 2.7 }
C) logx2.7\log \frac { x } { 2.7 }
D) log2.7x\log 2.7 x
E)None of these
سؤال
Condense the expression to the logarithm of a single quantity. ?
Ln 8 + ln x
?

A)ln x8
B)ln 8x
C) ln8x\ln \frac { 8 } { x }
D)ln 8x
E)ln 8 × ln x
سؤال
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. ) ?
Log3 9x
?

A) log39log3x\frac { \log _ { 3 } 9 } { \log _ { 3 } x }
B)log3 9? × log3 x
C)log3 9? + log3 x
D)log3 9? - log3 x
E)None of these
سؤال
Condense the expression to the logarithm of a single quantity. ?
Log x - 3log(x + 1)
?

A)3log(x(x + 1))
B) 3logx(x+1)3 \log \frac { x } { ( x + 1 ) }
C) logx(x+1)3\log \frac { x } { ( x + 1 ) ^ { 3 } }
D)log(x(x + 1)3)
E) 13logx(x+1)\frac { 1 } { 3 } \log \frac { x } { ( x + 1 ) }
سؤال
Rewrite the logarithm as a ratio of common logarithms.? logx211\log _ { x } \frac { 2 } { 11 } ?

A) logxlog211\frac { \log x } { \log \frac { 2 } { 11 } }
B) log211logx\frac { \log \frac { 2 } { 11 } } { \log x }
C) log211x\log \frac { 2 } { 11 } x
D) log112x\log \frac { 11 } { 2 x }
E)None of these
سؤال
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. )? logx2y47\log \sqrt [ 7 ] { \frac { x ^ { 2 } } { y ^ { 4 } } } ?

A) 27logx47logy\frac { 2 } { 7 } \log x - \frac { 4 } { 7 } \log y
B) 114logx+128logy\frac { 1 } { 14 } \log x + \frac { 1 } { 28 } \log y
C) 72logx+74logy\frac { 7 } { 2 } \log x + \frac { 7 } { 4 } \log y
D) 14logx+28logy14 \log x + 28 \log y
E) 27logx+47logy\frac { 2 } { 7 } \log x + \frac { 4 } { 7 } \log y
سؤال
Rewrite the logarithm as a ratio of natural logarithms. ?
Log3.1 x
?

A) lnx3.1\ln \frac { x } { 3.1 }
B) ln3.1x\ln 3.1 x
C) ln3.1lnx\frac { \ln 3.1 } { \ln x }
D) lnxln3.1\frac { \ln x } { \ln 3.1 }
E)None of these
سؤال
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. ) ?
Ln 9x
?

A)ln 9 - ln x
B) ln9lnx\frac { \ln 9 } { \ln x }
C)ln 9 × ln x
D)ln 9 + ln x
E)None of these
سؤال
Condense the expression to the logarithm of a single quantity. ?
Log x - 2log y + 3log z
?

A) logz3xy2\log \frac { z ^ { 3 } } { x y ^ { 2 } }
B) logxy2z3\log \frac { x } { y ^ { 2 } z ^ { 3 } }
C) logxy2z3\log \frac { x y ^ { 2 } } { z ^ { 3 } }
D) logy2xz3\log \frac { y ^ { 2 } } { x z ^ { 3 } }
E) logxz3y2\log \frac { x z ^ { 3 } } { y ^ { 2 } }
سؤال
Find the exact value of the logarithmic expression without using a calculator. ​
Log6 216

A)3
B)6
C)216
D)35
E)None of these
سؤال
Rewrite the logarithm as a ratio of natural logarithms.? logx511\log _ { x } \frac { 5 } { 11 } ?

A) ln511lnx\frac { \ln \frac { 5 } { 11 } } { \ln x }
B) ln115x\ln \frac { 11 } { 5 x }
C) ln511x\ln \frac { 5 } { 11 } x
D) lnxln511\frac { \ln x } { \ln \frac { 5 } { 11 } }
E)None of these
سؤال
Find the exact value of the logarithmic expression without using a calculator.? log773\log _ { 7 } \sqrt [ 3 ] { 7 } ?

A)3
B) 13\frac { 1 } { 3 }
C)7
D)?21
E)None of these
سؤال
Find the exact value of the logarithmic expression without using a calculator. ​
5 ln e7

A)7
B)35
C)5
D)e
E)1
سؤال
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. )? log8x3y3z3\log _ { 8 } \frac { x ^ { 3 } } { y ^ { 3 } z ^ { 3 } } ?

A)3log8 x + 3log8 y + 3log8 z
B)3log8 x + 3log8 y - 3log8 z
C) 3log8x3log8y×3log8z\frac { 3 \log _ { 8 } x } { 3 \log _ { 8 } y \times 3 \log _ { 8 } z }
D)3log8 x - 3log8 y - 3log8 z
E)3log8 x - 3log8 y + 3log8 z
سؤال
Condense the expression to the logarithm of a single quantity. ?
Log2 10 + log2 x
?

A)log2 (10 - x)
B) ln210x\ln _ { 2 } \frac { 10 } { x }
C)log2 (10 + x)
D)log2 10x
E)log2 10x
سؤال
Rewrite the logarithm log4 17 in terms of the natural logarithm.

A) ln17log4e\frac { \ln 17 } { \log _ { 4 } e }
B) ln4ln17\frac { \ln 4 } { \ln 17 }
C) ln17ln4\frac { \ln 17 } { \ln 4 }
D)ln 17
E)ln 4 ln 17
سؤال
Find the exact value of log7493\log _ { 7 } \sqrt [ 3 ] { 49 } without using a calculator.

A) 349\frac { 3 } { 49 }
B) 143\frac { 14 } { 3 }
C) 23\frac { 2 } { 3 }
D)-1
E) 493\frac { 49 } { 3 }
سؤال
Condense the expression to the logarithm of a single quantity.? 12[log9(x+6)+2log9(x6)]12log9x\frac { 1 } { 2 } \left[ \log _ { 9 } ( x + 6 ) + 2 \log _ { 9 } ( x - 6 ) \right] - 12 \log _ { 9 } x ?

A) log9(x+6)x6x6\log _ { 9 } \frac { ( x + 6 ) \sqrt { x - 6 } } { x ^ { 6 } }
B) log9x12x6(x+6)\log _ { 9 } \frac { x ^ { 12 } \sqrt { x - 6 } } { ( x + 6 ) }
C) log9x6x6(x+6)\log _ { 9 } \frac { x ^ { 6 } \sqrt { x - 6 } } { ( x + 6 ) }
D) log9x12x+6(x6)\log _ { 9 } \frac { x ^ { 12 } \sqrt { x + 6 } } { ( x - 6 ) }
E) log9(x6)x+6x12\log _ { 9 } \frac { ( x - 6 ) \sqrt { x + 6 } } { x ^ { 12 } }
سؤال
Evaluate the logarithm using the change-of-base formula.Round your result to three decimal places.

Log15 1,500

A)5.701
B)3.701
C)2.701
D)6.701
E)4.701
سؤال
Evaluate the logarithm using the change-of-base formula.Round your result to three decimal places.

Log2 7

A)2.807
B)6.807
C)4.807
D)5.807
E)3.807
سؤال
Rewrite the logarithm log6 412 in terms of the common logarithm (base 10).

A)log 6 log 412
B) log412log6\frac { \log 412 } { \log 6 }
C) log6log412\frac { \log 6 } { \log 412 }
D)log 412
E) log412log610\frac { \log 412 } { \log _ { 6 } 10 }
سؤال
Use a graphing utility to graph the functions given by ?
Y1 = ln x - ln (x - 4)
?
And? y2=lnxx4y _ { 2 } = \ln \frac { x } { x - 4 } ?
In the same viewing window.
?

A)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.
?
F(x)= log4 x
?

A)f(x)= log x + log 4 = ln x + ln 4 ?  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ? <div style=padding-top: 35px>
B) f(x)=log4logx=ln4lnxf ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ? <div style=padding-top: 35px>
C) f(x)=logx4=lnx4f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ? <div style=padding-top: 35px>
D) f(x)=log4x=ln4xf ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ? <div style=padding-top: 35px>
E) f(x)=logxlog4=lnxln4f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ? <div style=padding-top: 35px>  ?
سؤال
Evaluate the logarithm using the change-of-base formula.Round your result to three decimal places.? log136\log _ { \frac { 1 } { 3 } } 6 ?

A)-0.631
B)2.369
C)0.369
D)-1.631
E)1.369
سؤال
Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.
?
F(x)= log11.7 x
?

A) f(x)=logxlog11.7=lnxln11.7f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?   <div style=padding-top: 35px>
B) f(x)=log11.7logx=ln11.7lnxf ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?   <div style=padding-top: 35px>
C)f(x)= log x? + log 11.7 = ln x? + ln 11.7  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?   <div style=padding-top: 35px>
D) f(x)=log11.7x=ln11.7xf ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?   <div style=padding-top: 35px>
E) f(x)=logx11.7=lnx11.7f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 } ?  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?   <div style=padding-top: 35px>
سؤال
Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.? f(x)=log15xf ( x ) = \log _ { \frac { 1 } { 5 } } x ?

A) f(x)=log15logx=ln15lnxf ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }    <div style=padding-top: 35px>
B) f(x)=logxlog15=lnxln15f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }    <div style=padding-top: 35px>
C) f(x)=logx+log15=lnx+ln15f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }    <div style=padding-top: 35px>
D) f(x)=log15x=ln15xf ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }    <div style=padding-top: 35px>
E) f(x)=logx15=lnx15f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }    <div style=padding-top: 35px>
سؤال
Use the properties of logarithms to rewrite and simplify the logarithmic expression. ​
Ln (3e4)

A)ln 4
B)ln 3 + 4
C)ln 4 + 3
D)ln 7
E)ln 3
سؤال
Condense the expression to the logarithm of a single quantity.? lnx[ln(x+6)+ln(x6)]\ln x - [ \ln ( x + 6 ) + \ln ( x - 6 ) ] ?

A) ln(x6)x(x+6)\ln \frac { ( x - 6 ) } { x ( x + 6 ) }
B) ln(x+6)x(x6)\ln \frac { ( x + 6 ) } { x ( x - 6 ) }
C) lnx(x6)(x+6)\ln \frac { x ( x - 6 ) } { ( x + 6 ) }
D) lnx(x6)(x+6)\ln \frac { x } { ( x - 6 ) ( x + 6 ) }
E) lnx(x+6)(x6)\ln \frac { x ( x + 6 ) } { ( x - 6 ) }
سؤال
Evaluate the logarithm log7 126 using the change of base formula.Round to 3 decimal places.

A)4.836
B)2.485
C)0.402
D)9.411
E)2.1
سؤال
Simplify the expression log5 175.

A)35log5 2
B)2 log5 7
C)7
D)​2 + log5 7
E)The expression cannot be simplified.
سؤال
Use the properties of logarithms to rewrite and simplify the logarithmic expression. ​
Log2 (42 · 74)

A)4 + 9 log2 4
B)9 + 4 log2 4
C)2 + 2 log2 7
D)4 + 4 log2 7
E)2 + 4 log2 7
سؤال
Evaluate the logarithm log1/3 0.603 using the change of base formula.Round to 3 decimal places.

A)2.172
B)0.556
C)-0.506
D)-0.22
E)0.46
سؤال
Evaluate the logarithm using the change-of-base formula.Round your result to three decimal places. ​
Log9 0.1

A)2.952
B)-0.048
C)-1.048
D)1.952
E)0.952
سؤال
Condense the expression to the logarithm of a single quantity.? 2[3lnxln(x+8)ln(x8)]2 [ 3 \ln x - \ln ( x + 8 ) - \ln ( x - 8 ) ] ?

A) ln(x3(x8)(x+8))2\ln \left( \frac { x ^ { 3 } } { ( x - 8 ) ( x + 8 ) } \right) ^ { 2 }
B) ln(x3(x+8)(x8))2\ln \left( \frac { x ^ { 3 } ( x + 8 ) } { ( x - 8 ) } \right) ^ { 2 }
C) ln(x3(x8)(x+8))2\ln \left( \frac { x ^ { 3 } ( x - 8 ) } { ( x + 8 ) } \right) ^ { 2 }
D) ln((x8)x3(x+8))2\ln \left( \frac { ( x - 8 ) } { x ^ { 3 } ( x + 8 ) } \right) ^ { 2 }
E) ln((x+8)x3(x8))2\ln \left( \frac { ( x + 8 ) } { x ^ { 3 } ( x - 8 ) } \right) ^ { 2 }
سؤال
Use the properties of logarithms to rewrite and simplify the logarithmic expression.? ln(2e3)\ln \left( \frac { 2 } { e ^ { 3 } } \right) ?

A)ln 2
B)ln 5
C)ln 2 - 3
D)ln 3 - 2
E)ln 3
سؤال
Assume that x,y,and z are positive numbers.Use the properties of logarithms to write the expression 2logbx6logby+17logbz- 2 \log _ { b } x - 6 \log _ { b } y + \frac { 1 } { 7 } \log _ { b } z as the logarithm of one quantity. ?

A) logbz1/7x6y2\log _ { b } \frac { z ^ { 1 / 7 } } { x ^ { 6 } y ^ { 2 } }
B) logbz1/6x2y7\log _ { b } \frac { z ^ { 1 / 6 } } { x ^ { 2 } y ^ { 7 } }
C) logbz1/2x7y6\log _ { b } \frac { z ^ { 1 / 2 } } { x ^ { 7 } y ^ { 6 } }
D) logbx1/7y2z6\log _ { b } \frac { x ^ { 1 / 7 } } { y ^ { 2 } z ^ { 6 } }
E) logbz1/7x2y6\log _ { b } \frac { z ^ { 1 / 7 } } { x ^ { 2 } y ^ { 6 } }
سؤال
Assume that x is a positive number.Use the properties of logarithms to write the expression ?
Logb (x + 8)- logb x as the logarithm of one quantity.
?

A) logbx2+8x\log _ { b } \frac { x ^ { 2 } + 8 } { x }
B) logbx+8x\log _ { b } \frac { x + 8 } { x }
C) logbx8x\log _ { b } \frac { x - 8 } { x }
D) logbx2+88\log _ { b } \frac { x ^ { 2 } + 8 } { 8 }
E)logb (x2 - 8x)
سؤال
Condense the expression 7(log x - log y)to the logarithm of a single term.

A) log(xy)7\log \left( \frac { x } { y } \right) ^ { 7 }
B) log7x7y\log \frac { 7 x } { 7 y }
C) logx7y\log \frac { x ^ { 7 } } { y }
D) logx7y7\log \frac { x ^ { 7 } } { \sqrt [ 7 ] { y } }
E)7(log x - log y)
سؤال
Assume that x,y,and c are positive numbers.Use the properties of logarithms to write the expression logc5xy\log _ { c } 5 x y in terms of the logarithms of x and y. ?

A) logc5+logcxy\log _ { c } 5 + \log _ { c } x y
B) logc5+logcx+logcy\log _ { c } 5 + \log _ { c } x + \log _ { c } y
C) logc5+logcx\log _ { c } 5 + \log _ { c } x
D) logc5+log5x+log5y\log _ { c } 5 + \log _ { 5 } x + \log _ { 5 } y
E) logc5+logcy\log _ { c } 5 + \log _ { c } y
سؤال
Simplify the expression log3(127)3\log _ { 3 } \left( \frac { 1 } { 27 } \right) ^ { 3 } .

A)3
B)0
C)-9
D)-81
E)The expression cannot be simplified.
سؤال
Condense the expression 13[log6x+log67][log6y]\frac { 1 } { 3 } \left[ \log _ { 6 } x + \log _ { 6 } 7 \right] - \left[ \log _ { 6 } y \right] to the logarithm of a single term.

A) log6(7x)3y\log _ { 6 } \frac { ( 7 x ) ^ { 3 } } { y }
B) log67x3y\log _ { 6 } \frac { \sqrt [ 3 ] { 7 x } } { y }
C) log67xy3\log _ { 6 } \sqrt [ 3 ] { \frac { 7 x } { y } }
D) log67x3log6y\log _ { 6 } \sqrt [ 3 ] { 7 x } - \log _ { 6 } y
E) log67x3y\log _ { 6 } \frac { 7 x } { 3 y }
سؤال
Condense the expression 3(log x - log y)to the logarithm of a single term.

A) logx3y\log \frac { x ^ { 3 } } { y }
B) log3x3y\log \frac { 3 x } { 3 y }
C) logxy3\log \frac { x } { y ^ { 3 } }
D)3(log x - log y)
E) log(xy)3\log \left( \frac { x } { y } \right) ^ { 3 }
سؤال
Find the exact value of lne250lne\ln e ^ { 250 } - \ln \sqrt { e } without using a calculator.

A)5
B)2.5
C)1.25
D)2
E)3
سؤال
Assume that x,y,and c are positive numbers.Use the properties of logarithms to write the expression logcxy6\log _ { c } \sqrt [ 6 ] { x y } in terms of the logarithms of x and y. ?

A) 16logcx+logcy\frac { 1 } { 6 } \log _ { c } x + \log _ { c } y
B) 6logcx+6logcy6 \log _ { c } x + 6 \log _ { c } y
C) 16logc(x+y)\frac { 1 } { 6 } \log _ { c } ( x + y )
D) logcx+logcy\log _ { c } x + \log _ { c } y
E) 16logcx+16logcy\frac { 1 } { 6 } \log _ { c } x + \frac { 1 } { 6 } \log _ { c } y
سؤال
Assume that x,y and c are positive numbers.Use the properties of logarithms to write the expression logcx6y4\log _ { c } x ^ { 6 } y ^ { 4 } in terms of the logarithms of x and y. ?

A) 6logcx+4logcy6 \log _ { c } x + 4 \log _ { c } y
B) 24logcx+y24 \log _ { c } x + y
C) 6logcx+6logcy6 \log _ { c } x + 6 \log _ { c } y
D) 24logcx+4logcy24 \log _ { c } x + 4 \log _ { c } y
E) 6logcx+24logcy6 \log _ { c } x + 24 \log _ { c } y
سؤال
Assume that x,y,z and b are positive numbers.Use the properties of logarithms to write the expression logbx5y2z44\log _ { b } \sqrt [ 4 ] { \frac { x ^ { 5 } y ^ { 2 } } { z ^ { 4 } } } in terms of the logarithms of x,y,and z. ?

A) 54logbx+logbylogbz\frac { 5 } { 4 } \log _ { b } x + \log _ { b } y - \log _ { b } z
B) 54logbx+12logbylogbz\frac { 5 } { 4 } \log _ { b } x + \frac { 1 } { 2 } \log _ { b } y - \log _ { b } z
C) logbx+12logbylogbz\log _ { b } x + \frac { 1 } { 2 } \log _ { b } y - \log _ { b } z
D) 54logb(x+y+z)\frac { 5 } { 4 } \log _ { b } ( x + y + z )
E) 20logbx+8logby16logbz20 \log _ { b } x + 8 \log _ { b } y - 16 \log _ { b } z
سؤال
Put the expressions in the appropriate order: ln8lne,ln8e,ln8\frac { \ln 8 } { \ln e } , \frac { \ln 8 } { e } , \ln 8 .

A) ln8<ln8e<ln8lne\ln 8 < \frac { \ln 8 } { e } < \frac { \ln 8 } { \ln e }
B) ln8e<ln8lne=ln8\frac { \ln 8 } { e } < \frac { \ln 8 } { \ln e } = \ln 8
C)? ln8<ln8e=ln8lne\ln 8 < \frac { \ln 8 } { e } = \frac { \ln 8 } { \ln e }
D) ln8lne<ln8<ln8lne\frac { \ln 8 } { \ln e } < \ln 8 < \frac { \ln 8 } { \ln e }
E)The expressions are equivalent.
سؤال
Condense the expression 15[log4x+log43][log4y]\frac { 1 } { 5 } \left[ \log _ { 4 } x + \log _ { 4 } 3 \right] - \left[ \log _ { 4 } y \right] to the logarithm of a single term.

A) log4(3x)5y\log _ { 4 } \frac { ( 3 x ) ^ { 5 } } { y }
B) log43x5y\log _ { 4 } \frac { 3 x } { 5 y }
C) log43xy5\log _ { 4 } \sqrt [ 5 ] { \frac { 3 x } { y } }
D) log43x5y\log _ { 4 } \frac { \sqrt [ 5 ] { 3 x } } { y }
E) log43x5log4y\log _ { 4 } \sqrt [ 5 ] { 3 x } - \log _ { 4 } y
سؤال
Find the exact value of log7493\log _ { 7 } \sqrt [ 3 ] { 49 } without using a calculator.

A) 493\frac { 49 } { 3 }
B) 349\frac { 3 } { 49 }
C)? 143\frac { 14 } { 3 }
D) 23\frac { 2 } { 3 }
E)-1
سؤال
The pH of an acidic solution is a measure of the concentration of the acid particles in the solution,with smaller values of the pH indicating higher acid concentration.In a laboratory experiment,the pH of a certain acid solution is changed by dissolving over-the-counter antacid tablets into the solution.In this experiment,the pH changes according to the equation pH=5.14+log(x0.40x)\mathrm { pH } = 5.14 + \log \left( \frac { x } { 0.40 - x } \right) , where x is the number of grams of antacid added to the solution.What is the pH of the solution after the addition of 0.05 grams of antacid tablet?

A)5.99
B)4.02
C)-0.85
D)4.29
E)5.14
سؤال
Condense the expression log4 x + log4 3 to the logarithm of a single term.

A)log4 -3x
B)log4 3x
C)log4 x3
D)log(3x)4
E)log4 (x + 3)
سؤال
Find the exact value of log444log411\log _ { 4 } 44 - \log _ { 4 } 11 without using a calculator.

A)1
B)4
C)11
D) 112\frac { 11 } { 2 }
E) 12\frac { 1 } { 2 }
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/57
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 20: Properties of Logarithms
1
Rewrite the logarithm as a ratio of natural logarithms. ?
Log5 19
?

A) ln519\ln \frac { 5 } { 19 }
B) ln195\ln \frac { 19 } { 5 }
C) ln5ln19\frac { \ln 5 } { \ln 19 }
D) ln19ln5\frac { \ln 19 } { \ln 5 }
E)None of these
ln19ln5\frac { \ln 19 } { \ln 5 }
2
Rewrite the logarithm as a ratio of common logarithms. ?
Log5 16
?

A) log16log5\frac { \log 16 } { \log 5 }
B) log165\log \frac { 16 } { 5 }
C) log5log16\frac { \log 5 } { \log 16 }
D) log516\log \frac { 5 } { 16 }
E)None of these
log16log5\frac { \log 16 } { \log 5 }
3
Rewrite the logarithm as a ratio of natural logarithms. ?
Log1/5 x
?

A) lnx5\ln \frac { x } { 5 }
B) ln15lnx\frac { \ln \frac { 1 } { 5 } } { \ln x }
C) lnxln15\frac { \ln x } { \ln \frac { 1 } { 5 } }
D) ln5x\ln 5 x
E)None of these
lnxln15\frac { \ln x } { \ln \frac { 1 } { 5 } }
4
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. ) ?
Log 5x4y
?

A)log 5 × 4log x × log y
B)log 5 + 4log x - log y
C)log 5 + log x + 4log y
D)log 5 + 4log x + log y
E) log54(logx+logy)\frac { \log 5 } { 4 ( \log x + \log y ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
5
Rewrite the logarithm as a ratio of common logarithms. ?
Log1/7 x
?

A) logxlog17\frac { \log x } { \log \frac { 1 } { 7 } }
B) log17logx\frac { \log \frac { 1 } { 7 } } { \log x }
C) logx7\log \frac { x } { 7 }
D) log7x\log 7 x
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
6
Rewrite the logarithm as a ratio of common logarithms. ?
Log2.7 x
?

A) log2.7logx\frac { \log 2.7 } { \log x }
B)? logxlog2.7\frac { \log x } { \log 2.7 }
C) logx2.7\log \frac { x } { 2.7 }
D) log2.7x\log 2.7 x
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
7
Condense the expression to the logarithm of a single quantity. ?
Ln 8 + ln x
?

A)ln x8
B)ln 8x
C) ln8x\ln \frac { 8 } { x }
D)ln 8x
E)ln 8 × ln x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
8
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. ) ?
Log3 9x
?

A) log39log3x\frac { \log _ { 3 } 9 } { \log _ { 3 } x }
B)log3 9? × log3 x
C)log3 9? + log3 x
D)log3 9? - log3 x
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
9
Condense the expression to the logarithm of a single quantity. ?
Log x - 3log(x + 1)
?

A)3log(x(x + 1))
B) 3logx(x+1)3 \log \frac { x } { ( x + 1 ) }
C) logx(x+1)3\log \frac { x } { ( x + 1 ) ^ { 3 } }
D)log(x(x + 1)3)
E) 13logx(x+1)\frac { 1 } { 3 } \log \frac { x } { ( x + 1 ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
10
Rewrite the logarithm as a ratio of common logarithms.? logx211\log _ { x } \frac { 2 } { 11 } ?

A) logxlog211\frac { \log x } { \log \frac { 2 } { 11 } }
B) log211logx\frac { \log \frac { 2 } { 11 } } { \log x }
C) log211x\log \frac { 2 } { 11 } x
D) log112x\log \frac { 11 } { 2 x }
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
11
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. )? logx2y47\log \sqrt [ 7 ] { \frac { x ^ { 2 } } { y ^ { 4 } } } ?

A) 27logx47logy\frac { 2 } { 7 } \log x - \frac { 4 } { 7 } \log y
B) 114logx+128logy\frac { 1 } { 14 } \log x + \frac { 1 } { 28 } \log y
C) 72logx+74logy\frac { 7 } { 2 } \log x + \frac { 7 } { 4 } \log y
D) 14logx+28logy14 \log x + 28 \log y
E) 27logx+47logy\frac { 2 } { 7 } \log x + \frac { 4 } { 7 } \log y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
12
Rewrite the logarithm as a ratio of natural logarithms. ?
Log3.1 x
?

A) lnx3.1\ln \frac { x } { 3.1 }
B) ln3.1x\ln 3.1 x
C) ln3.1lnx\frac { \ln 3.1 } { \ln x }
D) lnxln3.1\frac { \ln x } { \ln 3.1 }
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
13
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. ) ?
Ln 9x
?

A)ln 9 - ln x
B) ln9lnx\frac { \ln 9 } { \ln x }
C)ln 9 × ln x
D)ln 9 + ln x
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
14
Condense the expression to the logarithm of a single quantity. ?
Log x - 2log y + 3log z
?

A) logz3xy2\log \frac { z ^ { 3 } } { x y ^ { 2 } }
B) logxy2z3\log \frac { x } { y ^ { 2 } z ^ { 3 } }
C) logxy2z3\log \frac { x y ^ { 2 } } { z ^ { 3 } }
D) logy2xz3\log \frac { y ^ { 2 } } { x z ^ { 3 } }
E) logxz3y2\log \frac { x z ^ { 3 } } { y ^ { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the exact value of the logarithmic expression without using a calculator. ​
Log6 216

A)3
B)6
C)216
D)35
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
16
Rewrite the logarithm as a ratio of natural logarithms.? logx511\log _ { x } \frac { 5 } { 11 } ?

A) ln511lnx\frac { \ln \frac { 5 } { 11 } } { \ln x }
B) ln115x\ln \frac { 11 } { 5 x }
C) ln511x\ln \frac { 5 } { 11 } x
D) lnxln511\frac { \ln x } { \ln \frac { 5 } { 11 } }
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the exact value of the logarithmic expression without using a calculator.? log773\log _ { 7 } \sqrt [ 3 ] { 7 } ?

A)3
B) 13\frac { 1 } { 3 }
C)7
D)?21
E)None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the exact value of the logarithmic expression without using a calculator. ​
5 ln e7

A)7
B)35
C)5
D)e
E)1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
19
Use the properties of logarithms to expand the expression as a sum,difference,and/or constant multiple of logarithms.(Assume all variables are positive. )? log8x3y3z3\log _ { 8 } \frac { x ^ { 3 } } { y ^ { 3 } z ^ { 3 } } ?

A)3log8 x + 3log8 y + 3log8 z
B)3log8 x + 3log8 y - 3log8 z
C) 3log8x3log8y×3log8z\frac { 3 \log _ { 8 } x } { 3 \log _ { 8 } y \times 3 \log _ { 8 } z }
D)3log8 x - 3log8 y - 3log8 z
E)3log8 x - 3log8 y + 3log8 z
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
20
Condense the expression to the logarithm of a single quantity. ?
Log2 10 + log2 x
?

A)log2 (10 - x)
B) ln210x\ln _ { 2 } \frac { 10 } { x }
C)log2 (10 + x)
D)log2 10x
E)log2 10x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
21
Rewrite the logarithm log4 17 in terms of the natural logarithm.

A) ln17log4e\frac { \ln 17 } { \log _ { 4 } e }
B) ln4ln17\frac { \ln 4 } { \ln 17 }
C) ln17ln4\frac { \ln 17 } { \ln 4 }
D)ln 17
E)ln 4 ln 17
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the exact value of log7493\log _ { 7 } \sqrt [ 3 ] { 49 } without using a calculator.

A) 349\frac { 3 } { 49 }
B) 143\frac { 14 } { 3 }
C) 23\frac { 2 } { 3 }
D)-1
E) 493\frac { 49 } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
23
Condense the expression to the logarithm of a single quantity.? 12[log9(x+6)+2log9(x6)]12log9x\frac { 1 } { 2 } \left[ \log _ { 9 } ( x + 6 ) + 2 \log _ { 9 } ( x - 6 ) \right] - 12 \log _ { 9 } x ?

A) log9(x+6)x6x6\log _ { 9 } \frac { ( x + 6 ) \sqrt { x - 6 } } { x ^ { 6 } }
B) log9x12x6(x+6)\log _ { 9 } \frac { x ^ { 12 } \sqrt { x - 6 } } { ( x + 6 ) }
C) log9x6x6(x+6)\log _ { 9 } \frac { x ^ { 6 } \sqrt { x - 6 } } { ( x + 6 ) }
D) log9x12x+6(x6)\log _ { 9 } \frac { x ^ { 12 } \sqrt { x + 6 } } { ( x - 6 ) }
E) log9(x6)x+6x12\log _ { 9 } \frac { ( x - 6 ) \sqrt { x + 6 } } { x ^ { 12 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
24
Evaluate the logarithm using the change-of-base formula.Round your result to three decimal places.

Log15 1,500

A)5.701
B)3.701
C)2.701
D)6.701
E)4.701
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
25
Evaluate the logarithm using the change-of-base formula.Round your result to three decimal places.

Log2 7

A)2.807
B)6.807
C)4.807
D)5.807
E)3.807
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
26
Rewrite the logarithm log6 412 in terms of the common logarithm (base 10).

A)log 6 log 412
B) log412log6\frac { \log 412 } { \log 6 }
C) log6log412\frac { \log 6 } { \log 412 }
D)log 412
E) log412log610\frac { \log 412 } { \log _ { 6 } 10 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
27
Use a graphing utility to graph the functions given by ?
Y1 = ln x - ln (x - 4)
?
And? y2=lnxx4y _ { 2 } = \ln \frac { x } { x - 4 } ?
In the same viewing window.
?

A)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)
B)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)
C)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)
D)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)
E)  <strong>Use a graphing utility to graph the functions given by ? Y<sub>1</sub> = ln x - ln (x - 4) ? And?  y _ { 2 } = \ln \frac { x } { x - 4 }  ? In the same viewing window. ?</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
28
Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.
?
F(x)= log4 x
?

A)f(x)= log x + log 4 = ln x + ln 4 ?  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ?
B) f(x)=log4logx=ln4lnxf ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ?
C) f(x)=logx4=lnx4f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ?
D) f(x)=log4x=ln4xf ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ?
E) f(x)=logxlog4=lnxln4f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>4</sub> x ?</strong> A)f(x)= log x + log 4 = ln x + ln 4 ?   B)  f ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)  f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)  f ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)  f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }    ?  ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
29
Evaluate the logarithm using the change-of-base formula.Round your result to three decimal places.? log136\log _ { \frac { 1 } { 3 } } 6 ?

A)-0.631
B)2.369
C)0.369
D)-1.631
E)1.369
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
30
Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.
?
F(x)= log11.7 x
?

A) f(x)=logxlog11.7=lnxln11.7f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?
B) f(x)=log11.7logx=ln11.7lnxf ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?
C)f(x)= log x? + log 11.7 = ln x? + ln 11.7  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?
D) f(x)=log11.7x=ln11.7xf ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?
E) f(x)=logx11.7=lnx11.7f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 } ?  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio. ? F(x)= log<sub>11.7</sub> x ?</strong> A)  f ( x ) = \frac { \log x } { \log 11.7 } = \frac { \ln x } { \ln 11.7 }    B)  f ( x ) = \frac { \log 11.7 } { \log x } = \frac { \ln 11.7 } { \ln x }    C)f(x)= log x? + log 11.7 = ln x? + ln 11.7   D)  f ( x ) = \log \frac { 11.7 } { x } = \ln \frac { 11.7 } { x }    E)  f ( x ) = \log \frac { x } { 11.7 } = \ln \frac { x } { 11.7 }  ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
31
Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.? f(x)=log15xf ( x ) = \log _ { \frac { 1 } { 5 } } x ?

A) f(x)=log15logx=ln15lnxf ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
B) f(x)=logxlog15=lnxln15f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
C) f(x)=logx+log15=lnx+ln15f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
D) f(x)=log15x=ln15xf ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
E) f(x)=logx15=lnx15f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }  <strong>Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x ) = \log _ { \frac { 1 } { 5 } } x  ?</strong> A)  f ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)  f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)  f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)  f ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)  f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
32
Use the properties of logarithms to rewrite and simplify the logarithmic expression. ​
Ln (3e4)

A)ln 4
B)ln 3 + 4
C)ln 4 + 3
D)ln 7
E)ln 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
33
Condense the expression to the logarithm of a single quantity.? lnx[ln(x+6)+ln(x6)]\ln x - [ \ln ( x + 6 ) + \ln ( x - 6 ) ] ?

A) ln(x6)x(x+6)\ln \frac { ( x - 6 ) } { x ( x + 6 ) }
B) ln(x+6)x(x6)\ln \frac { ( x + 6 ) } { x ( x - 6 ) }
C) lnx(x6)(x+6)\ln \frac { x ( x - 6 ) } { ( x + 6 ) }
D) lnx(x6)(x+6)\ln \frac { x } { ( x - 6 ) ( x + 6 ) }
E) lnx(x+6)(x6)\ln \frac { x ( x + 6 ) } { ( x - 6 ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
34
Evaluate the logarithm log7 126 using the change of base formula.Round to 3 decimal places.

A)4.836
B)2.485
C)0.402
D)9.411
E)2.1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
35
Simplify the expression log5 175.

A)35log5 2
B)2 log5 7
C)7
D)​2 + log5 7
E)The expression cannot be simplified.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
36
Use the properties of logarithms to rewrite and simplify the logarithmic expression. ​
Log2 (42 · 74)

A)4 + 9 log2 4
B)9 + 4 log2 4
C)2 + 2 log2 7
D)4 + 4 log2 7
E)2 + 4 log2 7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
37
Evaluate the logarithm log1/3 0.603 using the change of base formula.Round to 3 decimal places.

A)2.172
B)0.556
C)-0.506
D)-0.22
E)0.46
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
38
Evaluate the logarithm using the change-of-base formula.Round your result to three decimal places. ​
Log9 0.1

A)2.952
B)-0.048
C)-1.048
D)1.952
E)0.952
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
39
Condense the expression to the logarithm of a single quantity.? 2[3lnxln(x+8)ln(x8)]2 [ 3 \ln x - \ln ( x + 8 ) - \ln ( x - 8 ) ] ?

A) ln(x3(x8)(x+8))2\ln \left( \frac { x ^ { 3 } } { ( x - 8 ) ( x + 8 ) } \right) ^ { 2 }
B) ln(x3(x+8)(x8))2\ln \left( \frac { x ^ { 3 } ( x + 8 ) } { ( x - 8 ) } \right) ^ { 2 }
C) ln(x3(x8)(x+8))2\ln \left( \frac { x ^ { 3 } ( x - 8 ) } { ( x + 8 ) } \right) ^ { 2 }
D) ln((x8)x3(x+8))2\ln \left( \frac { ( x - 8 ) } { x ^ { 3 } ( x + 8 ) } \right) ^ { 2 }
E) ln((x+8)x3(x8))2\ln \left( \frac { ( x + 8 ) } { x ^ { 3 } ( x - 8 ) } \right) ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
40
Use the properties of logarithms to rewrite and simplify the logarithmic expression.? ln(2e3)\ln \left( \frac { 2 } { e ^ { 3 } } \right) ?

A)ln 2
B)ln 5
C)ln 2 - 3
D)ln 3 - 2
E)ln 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
41
Assume that x,y,and z are positive numbers.Use the properties of logarithms to write the expression 2logbx6logby+17logbz- 2 \log _ { b } x - 6 \log _ { b } y + \frac { 1 } { 7 } \log _ { b } z as the logarithm of one quantity. ?

A) logbz1/7x6y2\log _ { b } \frac { z ^ { 1 / 7 } } { x ^ { 6 } y ^ { 2 } }
B) logbz1/6x2y7\log _ { b } \frac { z ^ { 1 / 6 } } { x ^ { 2 } y ^ { 7 } }
C) logbz1/2x7y6\log _ { b } \frac { z ^ { 1 / 2 } } { x ^ { 7 } y ^ { 6 } }
D) logbx1/7y2z6\log _ { b } \frac { x ^ { 1 / 7 } } { y ^ { 2 } z ^ { 6 } }
E) logbz1/7x2y6\log _ { b } \frac { z ^ { 1 / 7 } } { x ^ { 2 } y ^ { 6 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
42
Assume that x is a positive number.Use the properties of logarithms to write the expression ?
Logb (x + 8)- logb x as the logarithm of one quantity.
?

A) logbx2+8x\log _ { b } \frac { x ^ { 2 } + 8 } { x }
B) logbx+8x\log _ { b } \frac { x + 8 } { x }
C) logbx8x\log _ { b } \frac { x - 8 } { x }
D) logbx2+88\log _ { b } \frac { x ^ { 2 } + 8 } { 8 }
E)logb (x2 - 8x)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
43
Condense the expression 7(log x - log y)to the logarithm of a single term.

A) log(xy)7\log \left( \frac { x } { y } \right) ^ { 7 }
B) log7x7y\log \frac { 7 x } { 7 y }
C) logx7y\log \frac { x ^ { 7 } } { y }
D) logx7y7\log \frac { x ^ { 7 } } { \sqrt [ 7 ] { y } }
E)7(log x - log y)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
44
Assume that x,y,and c are positive numbers.Use the properties of logarithms to write the expression logc5xy\log _ { c } 5 x y in terms of the logarithms of x and y. ?

A) logc5+logcxy\log _ { c } 5 + \log _ { c } x y
B) logc5+logcx+logcy\log _ { c } 5 + \log _ { c } x + \log _ { c } y
C) logc5+logcx\log _ { c } 5 + \log _ { c } x
D) logc5+log5x+log5y\log _ { c } 5 + \log _ { 5 } x + \log _ { 5 } y
E) logc5+logcy\log _ { c } 5 + \log _ { c } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
45
Simplify the expression log3(127)3\log _ { 3 } \left( \frac { 1 } { 27 } \right) ^ { 3 } .

A)3
B)0
C)-9
D)-81
E)The expression cannot be simplified.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
46
Condense the expression 13[log6x+log67][log6y]\frac { 1 } { 3 } \left[ \log _ { 6 } x + \log _ { 6 } 7 \right] - \left[ \log _ { 6 } y \right] to the logarithm of a single term.

A) log6(7x)3y\log _ { 6 } \frac { ( 7 x ) ^ { 3 } } { y }
B) log67x3y\log _ { 6 } \frac { \sqrt [ 3 ] { 7 x } } { y }
C) log67xy3\log _ { 6 } \sqrt [ 3 ] { \frac { 7 x } { y } }
D) log67x3log6y\log _ { 6 } \sqrt [ 3 ] { 7 x } - \log _ { 6 } y
E) log67x3y\log _ { 6 } \frac { 7 x } { 3 y }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
47
Condense the expression 3(log x - log y)to the logarithm of a single term.

A) logx3y\log \frac { x ^ { 3 } } { y }
B) log3x3y\log \frac { 3 x } { 3 y }
C) logxy3\log \frac { x } { y ^ { 3 } }
D)3(log x - log y)
E) log(xy)3\log \left( \frac { x } { y } \right) ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the exact value of lne250lne\ln e ^ { 250 } - \ln \sqrt { e } without using a calculator.

A)5
B)2.5
C)1.25
D)2
E)3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
49
Assume that x,y,and c are positive numbers.Use the properties of logarithms to write the expression logcxy6\log _ { c } \sqrt [ 6 ] { x y } in terms of the logarithms of x and y. ?

A) 16logcx+logcy\frac { 1 } { 6 } \log _ { c } x + \log _ { c } y
B) 6logcx+6logcy6 \log _ { c } x + 6 \log _ { c } y
C) 16logc(x+y)\frac { 1 } { 6 } \log _ { c } ( x + y )
D) logcx+logcy\log _ { c } x + \log _ { c } y
E) 16logcx+16logcy\frac { 1 } { 6 } \log _ { c } x + \frac { 1 } { 6 } \log _ { c } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
50
Assume that x,y and c are positive numbers.Use the properties of logarithms to write the expression logcx6y4\log _ { c } x ^ { 6 } y ^ { 4 } in terms of the logarithms of x and y. ?

A) 6logcx+4logcy6 \log _ { c } x + 4 \log _ { c } y
B) 24logcx+y24 \log _ { c } x + y
C) 6logcx+6logcy6 \log _ { c } x + 6 \log _ { c } y
D) 24logcx+4logcy24 \log _ { c } x + 4 \log _ { c } y
E) 6logcx+24logcy6 \log _ { c } x + 24 \log _ { c } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
51
Assume that x,y,z and b are positive numbers.Use the properties of logarithms to write the expression logbx5y2z44\log _ { b } \sqrt [ 4 ] { \frac { x ^ { 5 } y ^ { 2 } } { z ^ { 4 } } } in terms of the logarithms of x,y,and z. ?

A) 54logbx+logbylogbz\frac { 5 } { 4 } \log _ { b } x + \log _ { b } y - \log _ { b } z
B) 54logbx+12logbylogbz\frac { 5 } { 4 } \log _ { b } x + \frac { 1 } { 2 } \log _ { b } y - \log _ { b } z
C) logbx+12logbylogbz\log _ { b } x + \frac { 1 } { 2 } \log _ { b } y - \log _ { b } z
D) 54logb(x+y+z)\frac { 5 } { 4 } \log _ { b } ( x + y + z )
E) 20logbx+8logby16logbz20 \log _ { b } x + 8 \log _ { b } y - 16 \log _ { b } z
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
52
Put the expressions in the appropriate order: ln8lne,ln8e,ln8\frac { \ln 8 } { \ln e } , \frac { \ln 8 } { e } , \ln 8 .

A) ln8<ln8e<ln8lne\ln 8 < \frac { \ln 8 } { e } < \frac { \ln 8 } { \ln e }
B) ln8e<ln8lne=ln8\frac { \ln 8 } { e } < \frac { \ln 8 } { \ln e } = \ln 8
C)? ln8<ln8e=ln8lne\ln 8 < \frac { \ln 8 } { e } = \frac { \ln 8 } { \ln e }
D) ln8lne<ln8<ln8lne\frac { \ln 8 } { \ln e } < \ln 8 < \frac { \ln 8 } { \ln e }
E)The expressions are equivalent.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
53
Condense the expression 15[log4x+log43][log4y]\frac { 1 } { 5 } \left[ \log _ { 4 } x + \log _ { 4 } 3 \right] - \left[ \log _ { 4 } y \right] to the logarithm of a single term.

A) log4(3x)5y\log _ { 4 } \frac { ( 3 x ) ^ { 5 } } { y }
B) log43x5y\log _ { 4 } \frac { 3 x } { 5 y }
C) log43xy5\log _ { 4 } \sqrt [ 5 ] { \frac { 3 x } { y } }
D) log43x5y\log _ { 4 } \frac { \sqrt [ 5 ] { 3 x } } { y }
E) log43x5log4y\log _ { 4 } \sqrt [ 5 ] { 3 x } - \log _ { 4 } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find the exact value of log7493\log _ { 7 } \sqrt [ 3 ] { 49 } without using a calculator.

A) 493\frac { 49 } { 3 }
B) 349\frac { 3 } { 49 }
C)? 143\frac { 14 } { 3 }
D) 23\frac { 2 } { 3 }
E)-1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
55
The pH of an acidic solution is a measure of the concentration of the acid particles in the solution,with smaller values of the pH indicating higher acid concentration.In a laboratory experiment,the pH of a certain acid solution is changed by dissolving over-the-counter antacid tablets into the solution.In this experiment,the pH changes according to the equation pH=5.14+log(x0.40x)\mathrm { pH } = 5.14 + \log \left( \frac { x } { 0.40 - x } \right) , where x is the number of grams of antacid added to the solution.What is the pH of the solution after the addition of 0.05 grams of antacid tablet?

A)5.99
B)4.02
C)-0.85
D)4.29
E)5.14
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
56
Condense the expression log4 x + log4 3 to the logarithm of a single term.

A)log4 -3x
B)log4 3x
C)log4 x3
D)log(3x)4
E)log4 (x + 3)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find the exact value of log444log411\log _ { 4 } 44 - \log _ { 4 } 11 without using a calculator.

A)1
B)4
C)11
D) 112\frac { 11 } { 2 }
E) 12\frac { 1 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.