Deck 34: Sum and Difference Formulas

ملء الشاشة (f)
exit full mode
سؤال
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t ​ where y is the distance from equilibrium (in feet)and t is the time (in seconds).

Use the identity asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) where C=arctan(b/a),a>0C = \arctan ( b / a ) , a > 0 ,to write the model in the form y=a2+b2sin(Bt+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B t + C ) .

A) y=sin(2t+0.9273)y = \sin ( 2 t + 0.9273 )
B) y=245sin(2t+0.9273)y = \frac { 24 } { 5 } \sin ( 2 t + 0.9273 )
C) y=245sin(2t0.9273)y = \frac { 24 } { 5 } \sin ( 2 t - 0.9273 )
D) y=sin(2t0.9273)y = \sin ( 2 t - 0.9273 )
E) y=524sin(2t+0.9273)y = \frac { 5 } { 24 } \sin ( 2 t + 0.9273 )
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the expression as the sine of an angle.​ sin55cos5+cos55sin5\sin 55 ^ { \circ } \cos 5 ^ { \circ } + \cos 55 ^ { \circ } \sin 5 ^ { \circ }

A) sin55\sin 55 ^ { \circ }
B) cos60\cos 60 ^ { \circ }
C) cos50\cos 50 ^ { \circ }
D) sin60\sin 60 ^ { \circ }
E) sin50\sin 50 ^ { \circ }
سؤال
Find the expression as the sine or cosine of an angle.​ cos100cos60sin100sin60\cos 100 ^ { \circ } \cos 60 ^ { \circ } - \sin 100 ^ { \circ } \sin 60 ^ { \circ }

A) cos40\cos 40 ^ { \circ }
B) sin40\sin 40 ^ { \circ }
C) sin160\sin 160 ^ { \circ }
D) cos160\cos 160 ^ { \circ }
E) cos100\cos 100 ^ { \circ }
سؤال
Simplify the expression algebraically.​ 3cos(πθ)+3sin(π2+θ)3 \cos ( \pi - \theta ) + 3 \sin \left( \frac { \pi } { 2 } + \theta \right)

A) 3cos(θ)3sin(θ)3 \cos ( \theta ) - 3 \sin ( \theta )
B)0
C) 3cos(θ)+3sin(θ)3 \cos ( \theta ) + 3 \sin ( \theta )
D)1
E)6
سؤال
Simplify the expression algebraically.​ cos(7x+4y)cos(7x4y)\cos ( 7 x + 4 y ) \cos ( 7 x - 4 y )

A) cos27xsin2y\cos ^ { 2 } 7 x - \sin ^ { 2 } y
B) cos27x+sin24y\cos ^ { 2 } 7 x + \sin ^ { 2 } 4 y
C) cos27xsin24y\cos ^ { 2 } 7 x - \sin ^ { 2 } 4 y
D) cos2xsin24y\cos ^ { 2 } x - \sin ^ { 2 } 4 y
E) cos2xsin2y\cos ^ { 2 } x - \sin ^ { 2 } y
سؤال
Find the expression as the tangent of an angle.​ tan3x+tanx1tan3xtanx\frac { \tan 3 x + \tan x } { 1 - \tan 3 x \tan x }

A) tan2x\tan 2 x
B) tan3x\tan 3 x
C) tan4x\tan 4 x
D) tan14x\tan ^ { - 1 } 4 x
E) tan12x\tan ^ { - 1 } 2 x
سؤال
Simplify the expression algebraically. 4tan(π4θ)4 \tan \left( \frac { \pi } { 4 } - \theta \right)

A) 44tanθ1+tanθ\frac { 4 - 4 \tan \theta } { 1 + \tan \theta }
B) 44tanθtanθ\frac { 4 - 4 \tan \theta } { \tan \theta }
C) tanθ4tanθ\frac { \tan \theta } { 4 - \tan \theta }
D) 4+4tanθ1tanθ\frac { 4 + 4 \tan \theta } { 1 - \tan \theta }
E) 4+4tanθtanθ\frac { 4 + 4 \tan \theta } { \tan \theta }
سؤال
Simplify the expression algebraically.​ sin(9x+9y)sin(9x9y)\sin ( 9 x + 9 y ) \sin ( 9 x - 9 y )

A) sin2xsin29y\sin ^ { 2 } x - \sin ^ { 2 } 9 y
B) sin29x+sin29y\sin ^ { 2 } 9 x + \sin ^ { 2 } 9 y
C) sin29xsin29y\sin ^ { 2 } 9 x - \sin ^ { 2 } 9 y
D) sin2x+sin2y\sin ^ { 2 } x + \sin ^ { 2 } y
E) sin29xsin2y\sin ^ { 2 } 9 x - \sin ^ { 2 } y
سؤال
Simplify the expression algebraically.​ 92cos(5π4x)\frac { 9 } { \sqrt { 2 } } \cos \left( \frac { 5 \pi } { 4 } - x \right)

A)- 92\frac { 9 } { 2 } (cosx+sinx)( \cos x + \sin x )
B) 92\frac { 9 } { 2 } (cosxsinx)( \cos x - \sin x )
C) 92\frac { 9 } { 2 } (cos5x4+sin5x4)\left( \cos \frac { 5 x } { 4 } + \sin \frac { 5 x } { 4 } \right)
D) 92\frac { 9 } { 2 } (sinxcosx)( \sin x - \cos x )
E) 92\frac { 9 } { 2 } (cos5x4sin5x4)\left( \cos \frac { 5 x } { 4 } - \sin \frac { 5 x } { 4 } \right)
سؤال
Find the expression as the sine or cosine of an angle.​ cos9xcos5y+sin9xsin5y\cos 9 x \cos 5 y + \sin 9 x \sin 5 y

A) sin(5x9y)\sin ( 5 x - 9 y )
B) sin(9x5y)\sin ( 9 x - 5 y )
C) cos(5x9y)\cos ( 5 x - 9 y )
D) cos(9x5y)\cos ( 9 x - 5 y )
E) cos(9x+5y)\cos ( 9 x + 5 y )
سؤال
Find the expression as the tangent of an angle.​ tan130tan301+tan130tan30\frac { \tan 130 ^ { \circ } - \tan 30 ^ { \circ } } { 1 + \tan 130 ^ { \circ } \tan 30 ^ { \circ } }

A) tan1100\tan ^ { - 1 } 100 ^ { \circ }
B) tan1130\tan ^ { - 1 } 130 ^ { \circ }
C) tan160\tan 160 ^ { \circ }
D) tan100\tan 100 ^ { \circ }
E) tan30\tan 30 ^ { \circ }
سؤال
Simplify the expression algebraically.​ cos(6x+9y)+cos(6x9y)\cos ( 6 x + 9 y ) + \cos ( 6 x - 9 y )

A) cos6x\cos 6 x
B) cos6xcos9y\cos 6 x \cos 9 y
C) 2cos6xcos9y2 \cos 6 x \cos 9 y
D) 2cos6x2 \cos 6 x
E) 2cosxcosy2 \cos x \cos y
سؤال
Simplify the expression algebraically. 5sin(π6+x)5 \sin \left( \frac { \pi } { 6 } + x \right)

A) 52\frac { 5 } { 2 } (cosx3sinx)( \cos x - \sqrt { 3 } \sin x )
B) 52\frac { 5 } { 2 } (cosx+3sinx)( \cos x + \sqrt { 3 } \sin x )
C) 52\frac { 5 } { 2 } (sinx3cosx)( \sin x - \sqrt { 3 } \cos x )
D) 52\frac { 5 } { 2 } (cosx+sinx)( \cos x + \sin x )
E) 52\frac { 5 } { 2 } (sinx+3cosx)( \sin x + \sqrt { 3 } \cos x )
سؤال
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t where y is the distance from equilibrium (in feet)and t is the time (in seconds). Find the amplitude of the oscillations of the weight.

A) 124ft\frac { 1 } { 24 } \mathrm { ft }
B) 110ft\frac { 1 } { 10 } \mathrm { ft }
C) 524ft\frac { 5 } { 24 } \mathrm { ft }
D) 15ft\frac { 1 } { 5 } \mathrm { ft }
E) 245ft\frac { 24 } { 5 } \mathrm { ft }
سؤال
Find the expression as the tangent of an angle.​ tan60tan201+tan60tan20\frac { \tan 60 ^ { \circ } - \tan 20 ^ { \circ } } { 1 + \tan 60 ^ { \circ } \tan 20 ^ { \circ } }

A) tan40\tan 40 ^ { \circ }
B) tan60\tan 60 ^ { \circ }
C) tan180\tan ^ { - 1 } 80 ^ { \circ }
D) tan20\tan 20 ^ { \circ }
E) tan140\tan ^ { - 1 } 40 ^ { \circ }
سؤال
Simplify the expression algebraically.​ 6sin(π2+x)6 \sin \left( \frac { \pi } { 2 } + x \right)

A) 6cosx6 \cos x
B) 6cosx- 6 \cos x
C) 6sinx6 \sin x
D) 16cosx- \frac { 1 } { 6 } \cos x
E) 16cosx\frac { 1 } { 6 } \cos x
سؤال
Simplify the expression algebraically.​ 3sin(π2x)3 \sin \left( \frac { \pi } { 2 } - x \right)

A) 13cosx\frac { 1 } { 3 } \cos x
B) 3cosx3 \cos x
C) 13cosx- \frac { 1 } { 3 } \cos x
D) 3cosx- 3 \cos x
E) 3sinx3 \sin x
سؤال
Find the expression as the cosine of an angle. ​​ cosπ5cosπ3sinπ5sinπ3\cos \frac { \pi } { 5 } \cos \frac { \pi } { 3 } - \sin \frac { \pi } { 5 } \sin \frac { \pi } { 3 }

A) sin15π8\sin \frac { 15 \pi } { 8 }
B) cos15π8\cos \frac { 15 \pi } { 8 }
C) cos8π15\cos \frac { 8 \pi } { 15 }
D) cosπ15\cos \frac { \pi } { 15 }
E) sin8π15\sin \frac { 8 \pi } { 15 }
سؤال
Simplify the expression algebraically.​ sin(7x+7y)+sin(7x7y)\sin ( 7 x + 7 y ) + \sin ( 7 x - 7 y )

A) sin(7x2+7y2)\sin \left( 7 x ^ { 2 } + 7 y ^ { 2 } \right)
B) 2sin7x2 \sin 7 x
C) sin(7x27y2)\sin \left( 7 x ^ { 2 } - 7 y ^ { 2 } \right)
D) sin7xcos7y\sin 7 x \cos 7 y
E) 2sin7xcos7y2 \sin 7 x \cos 7 y
سؤال
Find the expression as the sine of an angle.​ sin5cos1.7cos5sin1.7\sin 5 \cos 1.7 - \cos 5 \sin 1.7

A) sin3.4\sin 3.4
B) sin3.3\sin 3.3
C) sin3.5\sin 3.5
D) sin3.7\sin 3.7
E) sin3.6\sin 3.6
سؤال
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=9,b=2,B=2C = \arctan ( a / b ) , a = 9 , b = 2 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 85\sqrt { 85 } cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
B)9 cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
C)9 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
D) 85\sqrt { 85 } cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
E)2 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
سؤال
Simplify the following expression algebraically.​ 6tan(π+θ)6 \tan ( \pi + \theta )

A) 32tanθ- \frac { 3 } { 2 } \tan \theta
B) 6sinθ- 6 \sin \theta
C) 6tanθ- 6 \tan \theta
D) 6tanθ6 \tan \theta
E) 32tanθ\frac { 3 } { 2 } \tan \theta
سؤال
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=5,b=8,B=1C = \arctan ( b / a ) , a = 5 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 89\sqrt { 89 } sin(θ+1.0122)\sin ( \theta + 1.0122 )
B) 89\sqrt { 89 } sin(θ1.0122)\sin ( \theta - 1.0122 )
C) 89\sqrt { 89 } sin(2θ1.0122)\sin ( 2 \theta - 1.0122 )
D) 89\sqrt { 89 } sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
E) sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
سؤال
Simplify the following expression algebraically.​ 4sin(3π2+θ)4 \sin \left( \frac { 3 \pi } { 2 } + \theta \right)

A) 32cosθ\frac { 3 } { 2 } \cos \theta
B) 4cosθ4 \cos \theta
C) 4sinθ- 4 \sin \theta
D) 32cosθ- \frac { 3 } { 2 } \cos \theta
E) 4cosθ- 4 \cos \theta
سؤال
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=18,b=6,B=3C = \arctan ( b / a ) , a = 18 , b = 6 , B = 3 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 6106 \sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
B) 6106 \sqrt { 10 } sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
C) sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
D) 6106 \sqrt { 10 } sin(3θ0.3218)\sin ( 3 \theta - 0.3218 )
E) 6106 \sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
سؤال
Simplify the following expression algebraically.​ 7cos(π+x)7 \cos ( \pi + x )

A) 7sinx- 7 \sin x
B) 7cosx- 7 \cos x
C) 7cosx7 \cos x
D) 32cosx\frac { 3 } { 2 } \cos x
E) 32cosx- \frac { 3 } { 2 } \cos x
سؤال
Use a graphing utility to select correct graph of y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=sin(x+6),y2=sin(x)+sin(6)y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )

A)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
B)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
C)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
D)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
E)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
سؤال
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=3,b=,B=1C = \arctan ( b / a ) , a = 3 , b = , B = 1 to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) sin(θ+0.3218)\sin ( \theta + 0.3218 )
B) sin(θ0.3218)\sin ( \theta - 0.3218 )
C)3 sin(θ+0.3218)\sin ( \theta + 0.3218 )
D) 10\sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
E) 10\sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
سؤال
Simplify the following expression algebraically.​ cos(3π2x)\cos \left( \frac { 3 \pi } { 2 } - x \right)

A) sinx\sin x
B) 32sinx\frac { 3 } { 2 } \sin x
C) cosx- \cos x
D) sinx- \sin x
E) 32sinx- \frac { 3 } { 2 } \sin x
سؤال
Use a graphing utility to select the correct graph of ​ y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=cos(x+4),y2=cosx+cos4y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4

A)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
B)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
C)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
D)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
E)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
سؤال
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)6 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
B) 205\sqrt { 205 } cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
C) 205\sqrt { 205 } cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
D)13 cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
E)13 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
سؤال
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form.​ 6sin(θ+π4)\sqrt { 6 } \sin \left( \theta + \frac { \pi } { 4 } \right)

A) 3sinθ3cosθ\sqrt { 3 } \sin \theta - \sqrt { 3 } \cos \theta
B) 3sinθ+cosθ\sqrt { 3 } \sin \theta + \cos \theta
C) sinθ3cosθ\sin \theta - \sqrt { 3 } \cos \theta
D) 3sinθ+3cosθ\sqrt { 3 } \sin \theta + \sqrt { 3 } \cos \theta
E) sinθ+cosθ\sin \theta + \cos \theta
سؤال
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b)C = \arctan ( a / b ) C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form asinBθ+bcosBθa \sin B \theta + b \cos B \theta ​ 9 cos(θπ4)\cos \left( \theta - \frac { \pi } { 4 } \right)

A) 922cosθ\frac { 9 \sqrt { 2 } } { 2 } \cos \theta
B) 922sinθ922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
C) 922sinθ+922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
D) 922sinθ+922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
E) 922sinθ922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
سؤال
Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

A) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
سؤال
Find the exact value of the given expression. sin(π3π4)\sin \left( \frac { \pi } { 3 } - \frac { \pi } { 4 } \right)

A) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
سؤال
Use the formula asinBθ+bcosBθ=a2+b2sin(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) ,where C=arctan(a/b),a=2,b=8,B=1C = \arctan ( a / b ) , a = 2 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)2 cos(θ+0.245)\cos ( \theta + 0.245 )
B) 2172 \sqrt { 17 } cos(θ0.245)\cos ( \theta - 0.245 )
C) 2172 \sqrt { 17 } cos(θ+0.245)\cos ( \theta + 0.245 )
D)2 cos(θ0.245)\cos ( \theta - 0.245 )
E)8 cos(θ0.245)\cos ( \theta - 0.245 )
سؤال
Find the exact value of the given expression. cos(120+315)\cos \left( 120 ^ { \circ } + 315 ^ { \circ } \right)

A) (13)(22)8\frac { ( 1 - \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
B) (1+3)(22)8\frac { ( - 1 + \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
C) (1+3)(22)8\frac { ( 1 + \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
D) (13)(22)8\frac { ( - 1 - \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
سؤال
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 58\sqrt { 58 } cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
B) 58\sqrt { 58 } cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
C)7 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
D)3 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
E)3 cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
سؤال
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=1,b=3,B=2C = \arctan ( b / a ) , a = 1 , b = 3 , B = 2 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 10\sqrt { 10 } sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
B) 10\sqrt { 10 } sin(θ1.249)\sin ( \theta - 1.249 )
C) 10\sqrt { 10 } sin(2θ1.249)\sin ( 2 \theta - 1.249 )
D) 10\sqrt { 10 } sin(θ+1.249)\sin ( \theta + 1.249 )
E) sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
سؤال
Find the exact value of the given expression using a sum or difference formula. cos17π12\cos \frac { 17 \pi } { 12 }

A) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
سؤال
Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=35\sin u = \frac { 3 } { 5 } and cosv=2425\cos v = - \frac { 24 } { 25 } .(Both u and v are in Quadrant II. )

A) sin(u+v)=44125\sin ( u + v ) = - \frac { 44 } { 125 }
B) sin(u+v)=35\sin ( u + v ) = - \frac { 3 } { 5 }
C) sin(u+v)=45\sin ( u + v ) = \frac { 4 } { 5 }
D) sin(u+v)=45\sin ( u + v ) = - \frac { 4 } { 5 }
E) sin(u+v)=44125\sin ( u + v ) = \frac { 44 } { 125 }
سؤال
Find the exact value of the given expression.​ cos(300+135)\cos \left( 300 ^ { \circ } + 135 ^ { \circ } \right)

A) 1322\frac { 1 - \sqrt { 3 } } { 2 \sqrt { 2 } }
B) 1+322\frac { 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }
C) 1322\frac { - 1 - \sqrt { 3 } } { 2 \sqrt { 2 } }
D) 1+322\frac { - 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }
سؤال
Simplify the given expression algebraically. cos(π2+x)\cos \left( \frac { \pi } { 2 } + x \right)

A) cosx\cos x
B) sinx- \sin x
C) sinx\sin x
D)1
E) cosx- \cos x
سؤال
Write the given expression as the cosine of an angle.​ cos45cos40+sin45sin40\cos 45 ^ { \circ } \cos 40 ^ { \circ } + \sin 45 ^ { \circ } \sin 40 ^ { \circ }

A) cos(45)\cos \left( 45 ^ { \circ } \right)
B) cos(5)\cos \left( 5 ^ { \circ } \right)
C) cos(80)\cos \left( - 80 ^ { \circ } \right)
D) cos(40)\cos \left( 40 ^ { \circ } \right)
E) cos(85)\cos \left( 85 ^ { \circ } \right)
سؤال
Find the exact value of the given expression. sin(2π35π4)\sin \left( \frac { 2 \pi } { 3 } - \frac { 5 \pi } { 4 } \right)

A) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
B) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
C) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
D) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
سؤال
Write the given expression as the tangent of an angle. tan3x+tan4x1tan3xtan4x\frac { \tan 3 x + \tan 4 x } { 1 - \tan 3 x \tan 4 x }

A) tan(7x)\tan ( 7 x )
B) tan(3x)\tan ( 3 x )
C) tan(5x)\tan ( 5 x )
D) tan(x)\tan ( - x )
E) tan(5x)\tan ( - 5 x )
سؤال
Find the exact solutions of the given equation in the interval [0,2π). sin 2x = sin x

A) x=2π3,π,4π3x = \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
B) x=0,π3,π,5π3x = 0 , \frac { \pi } { 3 } , \pi , \frac { 5 \pi } { 3 }
C) x=π2,7π6,11π6x = \frac { \pi } { 2 } , \frac { 7 \pi } { 6 } , \frac { 11 \pi } { 6 }
D) x=0,π3,2π3,π,4π3,5π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 } , \frac { 5 \pi } { 3 }
E) x=0x = 0
سؤال
Simplify the given expression algebraically.​ cos(xπ)\cos ( x - \pi )

A) sinx\sin x
B) cosx\cos x
C) sinx- \sin x
D) cosx- \cos x
E)1
سؤال
Write the given expression as the cosine of an angle. cos60cos25sin60sin25\cos 60 ^ { \circ } \cos 25 ^ { \circ } - \sin 60 ^ { \circ } \sin 25 ^ { \circ }

A) cos(25)\cos \left( 25 ^ { \circ } \right)
B) cos(85)\cos \left( 85 ^ { \circ } \right)
C) cos(35)\cos \left( 35 ^ { \circ } \right)
D) cos(60)\cos \left( 60 ^ { \circ } \right)
E) cos(50)\cos \left( - 50 ^ { \circ } \right)
سؤال
Write the given expression as the sine of an angle. sin85cos50sin50cos85\sin 85 ^ { \circ } \cos 50 ^ { \circ } - \sin 50 ^ { \circ } \cos 85 ^ { \circ }

A) sin(135)\sin \left( 135 ^ { \circ } \right)
B) sin(100)\sin \left( - 100 ^ { \circ } \right)
C) sin(35)\sin \left( 35 ^ { \circ } \right)
D) sin(50)\sin \left( 50 ^ { \circ } \right)
E) sin(85)\sin \left( 85 ^ { \circ } \right)
سؤال
Write the given expression as an algebraic expression. cos(arccos x - arcsin x)

A) 00
B) 2x1x22 x \sqrt { 1 - x ^ { 2 } }
C) (x1x2x)(x2+1)x2+1\frac { \left( x \sqrt { 1 - x ^ { 2 } } - x \right) \left( \sqrt { x ^ { 2 } + 1 } \right) } { x ^ { 2 } + 1 }
D)1
E) (x1x2+x)(x2+1)x2+1\frac { \left( x \sqrt { 1 - x ^ { 2 } } + x \right) \left( \sqrt { x ^ { 2 } + 1 } \right) } { x ^ { 2 } + 1 }
سؤال
Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=817\sin u = \frac { 8 } { 17 } and cosv=6061\cos v = - \frac { 60 } { 61 } .(Both u and v are in Quadrant II. )

A) cos(u+v)=8121037\cos ( u + v ) = \frac { 812 } { 1037 }
B) cos(u+v)=3001037\cos ( u + v ) = - \frac { 300 } { 1037 }
C) cos(u+v)=8041037\cos ( u + v ) = - \frac { 804 } { 1037 }
D) cos(u+v)=3151037\cos ( u + v ) = \frac { 315 } { 1037 }
E) cos(u+v)=6451037\cos ( u + v ) = \frac { 645 } { 1037 }
سؤال
Find the exact value of the given expression. sin105cos345sin345cos105\sin 105 ^ { \circ } \cos 345 ^ { \circ } - \sin 345 ^ { \circ } \cos 105 ^ { \circ }

A) 12\frac { 1 } { 2 }
B) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) 22\frac { \sqrt { 2 } } { 2 }
E) 32\frac { \sqrt { 3 } } { 2 }
سؤال
Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=725\sin u = \frac { 7 } { 25 } and cosv=1213\cos v = - \frac { 12 } { 13 } .(Both u and v are in Quadrant II. )

A) sin(u+v)=36325\sin ( u + v ) = \frac { 36 } { 325 }
B) sin(u+v)=36325\sin ( u + v ) = - \frac { 36 } { 325 }
C) sin(u+v)=204325\sin ( u + v ) = - \frac { 204 } { 325 }
D) sin(u+v)=253325\sin ( u + v ) = - \frac { 253 } { 325 }
E) sin(u+v)=204325\sin ( u + v ) = \frac { 204 } { 325 }
سؤال
Write the given expression as the tangent of an angle.​ tan7x+tan4x1tan7xtan4x\frac { \tan 7 x + \tan 4 x } { 1 - \tan 7 x \tan 4 x }

A) tan(17x)\tan ( - 17 x )
B) tan(11x)\tan ( 11 x )
C) tan(7x)\tan ( 7 x )
D) tan(3x)\tan ( 3 x )
E) tan(5x)\tan ( 5 x )
سؤال
Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

A) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
B) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
C) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
D) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
سؤال
Write the given expression as the sine of an angle. sin45cos55sin5545\sin 45 ^ { \circ } \cos 55 ^ { \circ } - \sin 55 ^ { \circ } 45 ^ { \circ }

A) sin(110)\sin \left( - 110 ^ { \circ } \right)
B) sin(10)\sin \left( - 10 ^ { \circ } \right)
C) sin(100)\sin \left( 100 ^ { \circ } \right)
D) sin(45)\sin \left( 45 ^ { \circ } \right)
E) sin(55)\sin \left( 55 ^ { \circ } \right)
سؤال
Evaluate the expression.​ sinxsin(x+y)+cosxcos(x+y)\sin x \sin ( x + y ) + \cos x \cos ( x + y )

A) sin2xsin2y\sin ^ { 2 } x - \sin ^ { 2 } y
B)0
C) sinxcosx+sinycosy\sin x \cos x + \sin y \cos y
D) cosy\cos y
E) cos2xsin2x\cos ^ { 2 } x - \sin ^ { 2 } x
سؤال
Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=513\sin u = \frac { 5 } { 13 } and cosv=45\cos v = - \frac { 4 } { 5 } .(Both u and v are in Quadrant II. )

A) cos(u+v)=2865\cos ( u + v ) = \frac { 28 } { 65 }
B) cos(u+v)=1665\cos ( u + v ) = - \frac { 16 } { 65 }
C) cos(u+v)=3365\cos ( u + v ) = \frac { 33 } { 65 }
D) cos(u+v)=2865\cos ( u + v ) = - \frac { 28 } { 65 }
E) cos(u+v)=5665\cos ( u + v ) = \frac { 56 } { 65 }
سؤال
Find the exact value of the given expression using a sum or difference formula. cos13π12\cos \frac { 13 \pi } { 12 }

A) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
B) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
C) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
D) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
سؤال
Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sin 4x= -2sin 2x

A) x=π4,3π4,5π4,7π4x = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }
B) x=0,π3,2π3,π,4π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
C) x=π6,π2,5π6,3π2x = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 3 \pi } { 2 }
D) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
E) x=7π6,3π2,11π6x = \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
سؤال
Verify the given identity. Verify the given identity.  <div style=padding-top: 35px>
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/62
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 34: Sum and Difference Formulas
1
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t ​ where y is the distance from equilibrium (in feet)and t is the time (in seconds).

Use the identity asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) where C=arctan(b/a),a>0C = \arctan ( b / a ) , a > 0 ,to write the model in the form y=a2+b2sin(Bt+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B t + C ) .

A) y=sin(2t+0.9273)y = \sin ( 2 t + 0.9273 )
B) y=245sin(2t+0.9273)y = \frac { 24 } { 5 } \sin ( 2 t + 0.9273 )
C) y=245sin(2t0.9273)y = \frac { 24 } { 5 } \sin ( 2 t - 0.9273 )
D) y=sin(2t0.9273)y = \sin ( 2 t - 0.9273 )
E) y=524sin(2t+0.9273)y = \frac { 5 } { 24 } \sin ( 2 t + 0.9273 )
y=524sin(2t+0.9273)y = \frac { 5 } { 24 } \sin ( 2 t + 0.9273 )
2
Find the expression as the sine of an angle.​ sin55cos5+cos55sin5\sin 55 ^ { \circ } \cos 5 ^ { \circ } + \cos 55 ^ { \circ } \sin 5 ^ { \circ }

A) sin55\sin 55 ^ { \circ }
B) cos60\cos 60 ^ { \circ }
C) cos50\cos 50 ^ { \circ }
D) sin60\sin 60 ^ { \circ }
E) sin50\sin 50 ^ { \circ }
sin60\sin 60 ^ { \circ }
3
Find the expression as the sine or cosine of an angle.​ cos100cos60sin100sin60\cos 100 ^ { \circ } \cos 60 ^ { \circ } - \sin 100 ^ { \circ } \sin 60 ^ { \circ }

A) cos40\cos 40 ^ { \circ }
B) sin40\sin 40 ^ { \circ }
C) sin160\sin 160 ^ { \circ }
D) cos160\cos 160 ^ { \circ }
E) cos100\cos 100 ^ { \circ }
cos160\cos 160 ^ { \circ }
4
Simplify the expression algebraically.​ 3cos(πθ)+3sin(π2+θ)3 \cos ( \pi - \theta ) + 3 \sin \left( \frac { \pi } { 2 } + \theta \right)

A) 3cos(θ)3sin(θ)3 \cos ( \theta ) - 3 \sin ( \theta )
B)0
C) 3cos(θ)+3sin(θ)3 \cos ( \theta ) + 3 \sin ( \theta )
D)1
E)6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
5
Simplify the expression algebraically.​ cos(7x+4y)cos(7x4y)\cos ( 7 x + 4 y ) \cos ( 7 x - 4 y )

A) cos27xsin2y\cos ^ { 2 } 7 x - \sin ^ { 2 } y
B) cos27x+sin24y\cos ^ { 2 } 7 x + \sin ^ { 2 } 4 y
C) cos27xsin24y\cos ^ { 2 } 7 x - \sin ^ { 2 } 4 y
D) cos2xsin24y\cos ^ { 2 } x - \sin ^ { 2 } 4 y
E) cos2xsin2y\cos ^ { 2 } x - \sin ^ { 2 } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find the expression as the tangent of an angle.​ tan3x+tanx1tan3xtanx\frac { \tan 3 x + \tan x } { 1 - \tan 3 x \tan x }

A) tan2x\tan 2 x
B) tan3x\tan 3 x
C) tan4x\tan 4 x
D) tan14x\tan ^ { - 1 } 4 x
E) tan12x\tan ^ { - 1 } 2 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
7
Simplify the expression algebraically. 4tan(π4θ)4 \tan \left( \frac { \pi } { 4 } - \theta \right)

A) 44tanθ1+tanθ\frac { 4 - 4 \tan \theta } { 1 + \tan \theta }
B) 44tanθtanθ\frac { 4 - 4 \tan \theta } { \tan \theta }
C) tanθ4tanθ\frac { \tan \theta } { 4 - \tan \theta }
D) 4+4tanθ1tanθ\frac { 4 + 4 \tan \theta } { 1 - \tan \theta }
E) 4+4tanθtanθ\frac { 4 + 4 \tan \theta } { \tan \theta }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
8
Simplify the expression algebraically.​ sin(9x+9y)sin(9x9y)\sin ( 9 x + 9 y ) \sin ( 9 x - 9 y )

A) sin2xsin29y\sin ^ { 2 } x - \sin ^ { 2 } 9 y
B) sin29x+sin29y\sin ^ { 2 } 9 x + \sin ^ { 2 } 9 y
C) sin29xsin29y\sin ^ { 2 } 9 x - \sin ^ { 2 } 9 y
D) sin2x+sin2y\sin ^ { 2 } x + \sin ^ { 2 } y
E) sin29xsin2y\sin ^ { 2 } 9 x - \sin ^ { 2 } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
9
Simplify the expression algebraically.​ 92cos(5π4x)\frac { 9 } { \sqrt { 2 } } \cos \left( \frac { 5 \pi } { 4 } - x \right)

A)- 92\frac { 9 } { 2 } (cosx+sinx)( \cos x + \sin x )
B) 92\frac { 9 } { 2 } (cosxsinx)( \cos x - \sin x )
C) 92\frac { 9 } { 2 } (cos5x4+sin5x4)\left( \cos \frac { 5 x } { 4 } + \sin \frac { 5 x } { 4 } \right)
D) 92\frac { 9 } { 2 } (sinxcosx)( \sin x - \cos x )
E) 92\frac { 9 } { 2 } (cos5x4sin5x4)\left( \cos \frac { 5 x } { 4 } - \sin \frac { 5 x } { 4 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the expression as the sine or cosine of an angle.​ cos9xcos5y+sin9xsin5y\cos 9 x \cos 5 y + \sin 9 x \sin 5 y

A) sin(5x9y)\sin ( 5 x - 9 y )
B) sin(9x5y)\sin ( 9 x - 5 y )
C) cos(5x9y)\cos ( 5 x - 9 y )
D) cos(9x5y)\cos ( 9 x - 5 y )
E) cos(9x+5y)\cos ( 9 x + 5 y )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find the expression as the tangent of an angle.​ tan130tan301+tan130tan30\frac { \tan 130 ^ { \circ } - \tan 30 ^ { \circ } } { 1 + \tan 130 ^ { \circ } \tan 30 ^ { \circ } }

A) tan1100\tan ^ { - 1 } 100 ^ { \circ }
B) tan1130\tan ^ { - 1 } 130 ^ { \circ }
C) tan160\tan 160 ^ { \circ }
D) tan100\tan 100 ^ { \circ }
E) tan30\tan 30 ^ { \circ }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
12
Simplify the expression algebraically.​ cos(6x+9y)+cos(6x9y)\cos ( 6 x + 9 y ) + \cos ( 6 x - 9 y )

A) cos6x\cos 6 x
B) cos6xcos9y\cos 6 x \cos 9 y
C) 2cos6xcos9y2 \cos 6 x \cos 9 y
D) 2cos6x2 \cos 6 x
E) 2cosxcosy2 \cos x \cos y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
13
Simplify the expression algebraically. 5sin(π6+x)5 \sin \left( \frac { \pi } { 6 } + x \right)

A) 52\frac { 5 } { 2 } (cosx3sinx)( \cos x - \sqrt { 3 } \sin x )
B) 52\frac { 5 } { 2 } (cosx+3sinx)( \cos x + \sqrt { 3 } \sin x )
C) 52\frac { 5 } { 2 } (sinx3cosx)( \sin x - \sqrt { 3 } \cos x )
D) 52\frac { 5 } { 2 } (cosx+sinx)( \cos x + \sin x )
E) 52\frac { 5 } { 2 } (sinx+3cosx)( \sin x + \sqrt { 3 } \cos x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
14
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t where y is the distance from equilibrium (in feet)and t is the time (in seconds). Find the amplitude of the oscillations of the weight.

A) 124ft\frac { 1 } { 24 } \mathrm { ft }
B) 110ft\frac { 1 } { 10 } \mathrm { ft }
C) 524ft\frac { 5 } { 24 } \mathrm { ft }
D) 15ft\frac { 1 } { 5 } \mathrm { ft }
E) 245ft\frac { 24 } { 5 } \mathrm { ft }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the expression as the tangent of an angle.​ tan60tan201+tan60tan20\frac { \tan 60 ^ { \circ } - \tan 20 ^ { \circ } } { 1 + \tan 60 ^ { \circ } \tan 20 ^ { \circ } }

A) tan40\tan 40 ^ { \circ }
B) tan60\tan 60 ^ { \circ }
C) tan180\tan ^ { - 1 } 80 ^ { \circ }
D) tan20\tan 20 ^ { \circ }
E) tan140\tan ^ { - 1 } 40 ^ { \circ }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
16
Simplify the expression algebraically.​ 6sin(π2+x)6 \sin \left( \frac { \pi } { 2 } + x \right)

A) 6cosx6 \cos x
B) 6cosx- 6 \cos x
C) 6sinx6 \sin x
D) 16cosx- \frac { 1 } { 6 } \cos x
E) 16cosx\frac { 1 } { 6 } \cos x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
17
Simplify the expression algebraically.​ 3sin(π2x)3 \sin \left( \frac { \pi } { 2 } - x \right)

A) 13cosx\frac { 1 } { 3 } \cos x
B) 3cosx3 \cos x
C) 13cosx- \frac { 1 } { 3 } \cos x
D) 3cosx- 3 \cos x
E) 3sinx3 \sin x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the expression as the cosine of an angle. ​​ cosπ5cosπ3sinπ5sinπ3\cos \frac { \pi } { 5 } \cos \frac { \pi } { 3 } - \sin \frac { \pi } { 5 } \sin \frac { \pi } { 3 }

A) sin15π8\sin \frac { 15 \pi } { 8 }
B) cos15π8\cos \frac { 15 \pi } { 8 }
C) cos8π15\cos \frac { 8 \pi } { 15 }
D) cosπ15\cos \frac { \pi } { 15 }
E) sin8π15\sin \frac { 8 \pi } { 15 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
19
Simplify the expression algebraically.​ sin(7x+7y)+sin(7x7y)\sin ( 7 x + 7 y ) + \sin ( 7 x - 7 y )

A) sin(7x2+7y2)\sin \left( 7 x ^ { 2 } + 7 y ^ { 2 } \right)
B) 2sin7x2 \sin 7 x
C) sin(7x27y2)\sin \left( 7 x ^ { 2 } - 7 y ^ { 2 } \right)
D) sin7xcos7y\sin 7 x \cos 7 y
E) 2sin7xcos7y2 \sin 7 x \cos 7 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the expression as the sine of an angle.​ sin5cos1.7cos5sin1.7\sin 5 \cos 1.7 - \cos 5 \sin 1.7

A) sin3.4\sin 3.4
B) sin3.3\sin 3.3
C) sin3.5\sin 3.5
D) sin3.7\sin 3.7
E) sin3.6\sin 3.6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
21
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=9,b=2,B=2C = \arctan ( a / b ) , a = 9 , b = 2 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 85\sqrt { 85 } cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
B)9 cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
C)9 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
D) 85\sqrt { 85 } cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
E)2 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
22
Simplify the following expression algebraically.​ 6tan(π+θ)6 \tan ( \pi + \theta )

A) 32tanθ- \frac { 3 } { 2 } \tan \theta
B) 6sinθ- 6 \sin \theta
C) 6tanθ- 6 \tan \theta
D) 6tanθ6 \tan \theta
E) 32tanθ\frac { 3 } { 2 } \tan \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
23
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=5,b=8,B=1C = \arctan ( b / a ) , a = 5 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 89\sqrt { 89 } sin(θ+1.0122)\sin ( \theta + 1.0122 )
B) 89\sqrt { 89 } sin(θ1.0122)\sin ( \theta - 1.0122 )
C) 89\sqrt { 89 } sin(2θ1.0122)\sin ( 2 \theta - 1.0122 )
D) 89\sqrt { 89 } sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
E) sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
24
Simplify the following expression algebraically.​ 4sin(3π2+θ)4 \sin \left( \frac { 3 \pi } { 2 } + \theta \right)

A) 32cosθ\frac { 3 } { 2 } \cos \theta
B) 4cosθ4 \cos \theta
C) 4sinθ- 4 \sin \theta
D) 32cosθ- \frac { 3 } { 2 } \cos \theta
E) 4cosθ- 4 \cos \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
25
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=18,b=6,B=3C = \arctan ( b / a ) , a = 18 , b = 6 , B = 3 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 6106 \sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
B) 6106 \sqrt { 10 } sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
C) sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
D) 6106 \sqrt { 10 } sin(3θ0.3218)\sin ( 3 \theta - 0.3218 )
E) 6106 \sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
26
Simplify the following expression algebraically.​ 7cos(π+x)7 \cos ( \pi + x )

A) 7sinx- 7 \sin x
B) 7cosx- 7 \cos x
C) 7cosx7 \cos x
D) 32cosx\frac { 3 } { 2 } \cos x
E) 32cosx- \frac { 3 } { 2 } \cos x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
27
Use a graphing utility to select correct graph of y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=sin(x+6),y2=sin(x)+sin(6)y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )

A)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
B)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
C)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
D)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
E)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
28
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=3,b=,B=1C = \arctan ( b / a ) , a = 3 , b = , B = 1 to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) sin(θ+0.3218)\sin ( \theta + 0.3218 )
B) sin(θ0.3218)\sin ( \theta - 0.3218 )
C)3 sin(θ+0.3218)\sin ( \theta + 0.3218 )
D) 10\sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
E) 10\sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
29
Simplify the following expression algebraically.​ cos(3π2x)\cos \left( \frac { 3 \pi } { 2 } - x \right)

A) sinx\sin x
B) 32sinx\frac { 3 } { 2 } \sin x
C) cosx- \cos x
D) sinx- \sin x
E) 32sinx- \frac { 3 } { 2 } \sin x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
30
Use a graphing utility to select the correct graph of ​ y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=cos(x+4),y2=cosx+cos4y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4

A)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
B)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
C)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
D)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
E)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
31
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)6 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
B) 205\sqrt { 205 } cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
C) 205\sqrt { 205 } cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
D)13 cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
E)13 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
32
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form.​ 6sin(θ+π4)\sqrt { 6 } \sin \left( \theta + \frac { \pi } { 4 } \right)

A) 3sinθ3cosθ\sqrt { 3 } \sin \theta - \sqrt { 3 } \cos \theta
B) 3sinθ+cosθ\sqrt { 3 } \sin \theta + \cos \theta
C) sinθ3cosθ\sin \theta - \sqrt { 3 } \cos \theta
D) 3sinθ+3cosθ\sqrt { 3 } \sin \theta + \sqrt { 3 } \cos \theta
E) sinθ+cosθ\sin \theta + \cos \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
33
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b)C = \arctan ( a / b ) C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form asinBθ+bcosBθa \sin B \theta + b \cos B \theta ​ 9 cos(θπ4)\cos \left( \theta - \frac { \pi } { 4 } \right)

A) 922cosθ\frac { 9 \sqrt { 2 } } { 2 } \cos \theta
B) 922sinθ922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
C) 922sinθ+922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
D) 922sinθ+922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
E) 922sinθ922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

A) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the exact value of the given expression. sin(π3π4)\sin \left( \frac { \pi } { 3 } - \frac { \pi } { 4 } \right)

A) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
36
Use the formula asinBθ+bcosBθ=a2+b2sin(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) ,where C=arctan(a/b),a=2,b=8,B=1C = \arctan ( a / b ) , a = 2 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)2 cos(θ+0.245)\cos ( \theta + 0.245 )
B) 2172 \sqrt { 17 } cos(θ0.245)\cos ( \theta - 0.245 )
C) 2172 \sqrt { 17 } cos(θ+0.245)\cos ( \theta + 0.245 )
D)2 cos(θ0.245)\cos ( \theta - 0.245 )
E)8 cos(θ0.245)\cos ( \theta - 0.245 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find the exact value of the given expression. cos(120+315)\cos \left( 120 ^ { \circ } + 315 ^ { \circ } \right)

A) (13)(22)8\frac { ( 1 - \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
B) (1+3)(22)8\frac { ( - 1 + \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
C) (1+3)(22)8\frac { ( 1 + \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
D) (13)(22)8\frac { ( - 1 - \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
38
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 58\sqrt { 58 } cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
B) 58\sqrt { 58 } cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
C)7 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
D)3 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
E)3 cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
39
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=1,b=3,B=2C = \arctan ( b / a ) , a = 1 , b = 3 , B = 2 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 10\sqrt { 10 } sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
B) 10\sqrt { 10 } sin(θ1.249)\sin ( \theta - 1.249 )
C) 10\sqrt { 10 } sin(2θ1.249)\sin ( 2 \theta - 1.249 )
D) 10\sqrt { 10 } sin(θ+1.249)\sin ( \theta + 1.249 )
E) sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the exact value of the given expression using a sum or difference formula. cos17π12\cos \frac { 17 \pi } { 12 }

A) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=35\sin u = \frac { 3 } { 5 } and cosv=2425\cos v = - \frac { 24 } { 25 } .(Both u and v are in Quadrant II. )

A) sin(u+v)=44125\sin ( u + v ) = - \frac { 44 } { 125 }
B) sin(u+v)=35\sin ( u + v ) = - \frac { 3 } { 5 }
C) sin(u+v)=45\sin ( u + v ) = \frac { 4 } { 5 }
D) sin(u+v)=45\sin ( u + v ) = - \frac { 4 } { 5 }
E) sin(u+v)=44125\sin ( u + v ) = \frac { 44 } { 125 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
42
Find the exact value of the given expression.​ cos(300+135)\cos \left( 300 ^ { \circ } + 135 ^ { \circ } \right)

A) 1322\frac { 1 - \sqrt { 3 } } { 2 \sqrt { 2 } }
B) 1+322\frac { 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }
C) 1322\frac { - 1 - \sqrt { 3 } } { 2 \sqrt { 2 } }
D) 1+322\frac { - 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
43
Simplify the given expression algebraically. cos(π2+x)\cos \left( \frac { \pi } { 2 } + x \right)

A) cosx\cos x
B) sinx- \sin x
C) sinx\sin x
D)1
E) cosx- \cos x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
44
Write the given expression as the cosine of an angle.​ cos45cos40+sin45sin40\cos 45 ^ { \circ } \cos 40 ^ { \circ } + \sin 45 ^ { \circ } \sin 40 ^ { \circ }

A) cos(45)\cos \left( 45 ^ { \circ } \right)
B) cos(5)\cos \left( 5 ^ { \circ } \right)
C) cos(80)\cos \left( - 80 ^ { \circ } \right)
D) cos(40)\cos \left( 40 ^ { \circ } \right)
E) cos(85)\cos \left( 85 ^ { \circ } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find the exact value of the given expression. sin(2π35π4)\sin \left( \frac { 2 \pi } { 3 } - \frac { 5 \pi } { 4 } \right)

A) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
B) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
C) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
D) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
46
Write the given expression as the tangent of an angle. tan3x+tan4x1tan3xtan4x\frac { \tan 3 x + \tan 4 x } { 1 - \tan 3 x \tan 4 x }

A) tan(7x)\tan ( 7 x )
B) tan(3x)\tan ( 3 x )
C) tan(5x)\tan ( 5 x )
D) tan(x)\tan ( - x )
E) tan(5x)\tan ( - 5 x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find the exact solutions of the given equation in the interval [0,2π). sin 2x = sin x

A) x=2π3,π,4π3x = \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
B) x=0,π3,π,5π3x = 0 , \frac { \pi } { 3 } , \pi , \frac { 5 \pi } { 3 }
C) x=π2,7π6,11π6x = \frac { \pi } { 2 } , \frac { 7 \pi } { 6 } , \frac { 11 \pi } { 6 }
D) x=0,π3,2π3,π,4π3,5π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 } , \frac { 5 \pi } { 3 }
E) x=0x = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
48
Simplify the given expression algebraically.​ cos(xπ)\cos ( x - \pi )

A) sinx\sin x
B) cosx\cos x
C) sinx- \sin x
D) cosx- \cos x
E)1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
49
Write the given expression as the cosine of an angle. cos60cos25sin60sin25\cos 60 ^ { \circ } \cos 25 ^ { \circ } - \sin 60 ^ { \circ } \sin 25 ^ { \circ }

A) cos(25)\cos \left( 25 ^ { \circ } \right)
B) cos(85)\cos \left( 85 ^ { \circ } \right)
C) cos(35)\cos \left( 35 ^ { \circ } \right)
D) cos(60)\cos \left( 60 ^ { \circ } \right)
E) cos(50)\cos \left( - 50 ^ { \circ } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
50
Write the given expression as the sine of an angle. sin85cos50sin50cos85\sin 85 ^ { \circ } \cos 50 ^ { \circ } - \sin 50 ^ { \circ } \cos 85 ^ { \circ }

A) sin(135)\sin \left( 135 ^ { \circ } \right)
B) sin(100)\sin \left( - 100 ^ { \circ } \right)
C) sin(35)\sin \left( 35 ^ { \circ } \right)
D) sin(50)\sin \left( 50 ^ { \circ } \right)
E) sin(85)\sin \left( 85 ^ { \circ } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
51
Write the given expression as an algebraic expression. cos(arccos x - arcsin x)

A) 00
B) 2x1x22 x \sqrt { 1 - x ^ { 2 } }
C) (x1x2x)(x2+1)x2+1\frac { \left( x \sqrt { 1 - x ^ { 2 } } - x \right) \left( \sqrt { x ^ { 2 } + 1 } \right) } { x ^ { 2 } + 1 }
D)1
E) (x1x2+x)(x2+1)x2+1\frac { \left( x \sqrt { 1 - x ^ { 2 } } + x \right) \left( \sqrt { x ^ { 2 } + 1 } \right) } { x ^ { 2 } + 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=817\sin u = \frac { 8 } { 17 } and cosv=6061\cos v = - \frac { 60 } { 61 } .(Both u and v are in Quadrant II. )

A) cos(u+v)=8121037\cos ( u + v ) = \frac { 812 } { 1037 }
B) cos(u+v)=3001037\cos ( u + v ) = - \frac { 300 } { 1037 }
C) cos(u+v)=8041037\cos ( u + v ) = - \frac { 804 } { 1037 }
D) cos(u+v)=3151037\cos ( u + v ) = \frac { 315 } { 1037 }
E) cos(u+v)=6451037\cos ( u + v ) = \frac { 645 } { 1037 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the exact value of the given expression. sin105cos345sin345cos105\sin 105 ^ { \circ } \cos 345 ^ { \circ } - \sin 345 ^ { \circ } \cos 105 ^ { \circ }

A) 12\frac { 1 } { 2 }
B) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) 22\frac { \sqrt { 2 } } { 2 }
E) 32\frac { \sqrt { 3 } } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=725\sin u = \frac { 7 } { 25 } and cosv=1213\cos v = - \frac { 12 } { 13 } .(Both u and v are in Quadrant II. )

A) sin(u+v)=36325\sin ( u + v ) = \frac { 36 } { 325 }
B) sin(u+v)=36325\sin ( u + v ) = - \frac { 36 } { 325 }
C) sin(u+v)=204325\sin ( u + v ) = - \frac { 204 } { 325 }
D) sin(u+v)=253325\sin ( u + v ) = - \frac { 253 } { 325 }
E) sin(u+v)=204325\sin ( u + v ) = \frac { 204 } { 325 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
55
Write the given expression as the tangent of an angle.​ tan7x+tan4x1tan7xtan4x\frac { \tan 7 x + \tan 4 x } { 1 - \tan 7 x \tan 4 x }

A) tan(17x)\tan ( - 17 x )
B) tan(11x)\tan ( 11 x )
C) tan(7x)\tan ( 7 x )
D) tan(3x)\tan ( 3 x )
E) tan(5x)\tan ( 5 x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

A) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
B) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
C) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
D) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
57
Write the given expression as the sine of an angle. sin45cos55sin5545\sin 45 ^ { \circ } \cos 55 ^ { \circ } - \sin 55 ^ { \circ } 45 ^ { \circ }

A) sin(110)\sin \left( - 110 ^ { \circ } \right)
B) sin(10)\sin \left( - 10 ^ { \circ } \right)
C) sin(100)\sin \left( 100 ^ { \circ } \right)
D) sin(45)\sin \left( 45 ^ { \circ } \right)
E) sin(55)\sin \left( 55 ^ { \circ } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
58
Evaluate the expression.​ sinxsin(x+y)+cosxcos(x+y)\sin x \sin ( x + y ) + \cos x \cos ( x + y )

A) sin2xsin2y\sin ^ { 2 } x - \sin ^ { 2 } y
B)0
C) sinxcosx+sinycosy\sin x \cos x + \sin y \cos y
D) cosy\cos y
E) cos2xsin2x\cos ^ { 2 } x - \sin ^ { 2 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
59
Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=513\sin u = \frac { 5 } { 13 } and cosv=45\cos v = - \frac { 4 } { 5 } .(Both u and v are in Quadrant II. )

A) cos(u+v)=2865\cos ( u + v ) = \frac { 28 } { 65 }
B) cos(u+v)=1665\cos ( u + v ) = - \frac { 16 } { 65 }
C) cos(u+v)=3365\cos ( u + v ) = \frac { 33 } { 65 }
D) cos(u+v)=2865\cos ( u + v ) = - \frac { 28 } { 65 }
E) cos(u+v)=5665\cos ( u + v ) = \frac { 56 } { 65 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
60
Find the exact value of the given expression using a sum or difference formula. cos13π12\cos \frac { 13 \pi } { 12 }

A) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
B) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
C) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
D) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sin 4x= -2sin 2x

A) x=π4,3π4,5π4,7π4x = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }
B) x=0,π3,2π3,π,4π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
C) x=π6,π2,5π6,3π2x = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 3 \pi } { 2 }
D) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
E) x=7π6,3π2,11π6x = \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
62
Verify the given identity. Verify the given identity.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 62 في هذه المجموعة.