Deck 1: Introduction and Vectors

ملء الشاشة (f)
exit full mode
سؤال
One U.S.fluid gallon contains a volume of 231 cubic inches.How many liters of gasoline would you have to buy in Canada to fill a 14-gallon tank? (Note: 1L = 10+3 cm3. )

A)53
B)21
C)14
D)8.0
E)4.0
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
John and Linda are arguing about the definition of density.John says the density of an object is proportional to its mass.Linda says the object's mass is proportional to its density and to its volume.Which one,if either,is correct?

A)They are both wrong.
B)John is correct,but Linda is wrong.
C)John is wrong,but Linda is correct.
D)They are both correct.
E)They are free to redefine density as they wish.
سؤال
Which one of the quantities below has dimensions equal to [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] ?

A)mv
B)mv2
C) mv2r\frac { m v ^ { 2 } } { r }
D)mrv
E) mv2r2\frac { m v ^ { 2 } } { r ^ { 2 } }
سؤال
If you drove day and night without stopping for one year without exceeding the legal highway speed limit in the United States,the maximum number of miles you could drive would be closest to:

A)8 700.
B)300 000.
C)500 000.
D)1 000 000.
E)32 000 000.
سؤال
If each frame of a motion picture film is 35 cm high,and 24 frames go by in a second,estimate how many frames are needed to show a two hour long movie.

A)1 400
B)25 000
C)50 000
D)170 000
E)This cannot be determined without knowing how many reels were used.
سؤال
Which of the following products of ratios gives the conversion factor to convert miles per hour (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right) to meters per second (ms)\left( \frac { \mathrm { m } } { \mathrm { s } } \right) ?

A) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
B) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
D) 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
E) 5280fmi12inf2.54 cm1in1 m100 cm3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
سؤال
One number has three significant figures and another number has four significant figures.If these numbers are added,subtracted,multiplied,or divided,which operation can produce the greatest number of significant figures?

A)the addition
B)the subtraction
C)the multiplication
D)the division
E)All the operations result in the same number of significant figures.
سؤال
The density of an object is defined as:

A)the volume occupied by each unit of mass.
B)the amount of mass for each unit of volume.
C)the weight of each unit of volume.
D)the amount of the substance that has unit volume and unit mass.
E)the amount of the substance that contains as many particles as 12 grams of the carbon-12 isotope.
سؤال
The answer to a question is [MLT - 1].The question is "What are the dimensions of

A)mr?"
B)mvr?"
C)ma?"
D)mat?"
E) mv2r\frac { m v ^ { 2 } } { r } ?"
سؤال
The quantity with the same units as force times time,Ft,with dimensions MLT - 1 is

A)mv
B)mvr
C)mv2r
D)ma
E) mv2r\frac { m v ^ { 2 } } { r }
سؤال
A standard exam page is 8.5 inches by 11 inches.An exam that is 2.0 mm thick has a volume of

A)1.9 * 104 mm3.
B)4.7 * 104 mm3.
C)1.2 *105 mm3.
D)3.1 * 105 mm3.
E)3.1 * 103 mm3.
سؤال
The equation for the change of position of a train starting at x = 0 m is given by x=12at2+bt3x = \frac { 1 } { 2 } a t ^ { 2 } + b t ^ { 3 } .The dimensions of b are

A)T - 3
B)LT - 3
C)LT - 2
D)LT - 1
E)L - 1T - 1
سؤال
One mole of the carbon-12 isotope contains 6.022 * 1023 atoms.What volume in m3 would be needed to store one mole of cube-shaped children's blocks 2.00 cm long on each side?

A)4.8 * 1018
B)1.2 *1022
C)6.0 * 1023
D)1.2 *1024
E)4.8 *1024
سؤال
Which of the following products of ratios gives the conversion factors to convert meters per second (ms)\left( \frac { \mathrm { m } } { \mathrm { s } } \right) to miles per hour (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right) ?

A) 5280fmi12inf2.54 cm1in100 cm1 m3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
B) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
D) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
E) 1mi5280f1f12in1in2.54 cm1 m100 cm3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
سؤال
Find the average density of a red giant star with a mass of 20 * 1030 kg (approximately 10 solar masses)and a radius of 150 *109 m (equal to the Earth's distance from the sun).

A)1.41*10-4 kg/m3
B)0.007 kg/m3
C)1.41 kg/m3
D)710 kg/m3
E)1.41*10 - 3 kg/m3
سؤال
Which of the following quantities has the same dimensions as kinetic energy, 12mv2\frac { 1 } { 2 } m v ^ { 2 } ? Note: [a] = [g] = LT - 2;[h] = L and [v] = LT - 1.

A)ma
B)mvx
C)mvt
D)mgh
E)mgt
سؤال
Which quantity can be converted from the English system to the metric system by the conversion factor 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} } ?

A)feet per second
B)feet per hour
C)miles per second
D)miles per hour
E)miles per minute
سؤال
The term 12ρv2\frac { 1 } { 2 } \rho v ^ { 2 } occurs in Bernoulli's equation in Chapter 15,with ρ\rho being the density of a fluid and v its speed.The dimensions of this term are

A)M - 1L5T2
B)MLT2
C)ML - 1T - 2
D)M - 1L9T - 2
E)M - 1L3T - 2
سؤال
Find the average density of a white dwarf star if it has a mass equal to that of the sun (2.0 * 1030 kg)and a radius equal to that of the Earth (6.4*106 m).

A)9.0 * 106 kg/m3
B)1.8* 107 kg/m3
C)1.8 * 109 kg/m3
D)3.6 * 1010 kg/m3
E)9.0 *107 kg/m3
سؤال
Spike claims that dimensional analysis shows that the correct expression for change in velocity, vfvi\vec { v } _ { f } - \vec { v } _ { i } ,is vfvi=mtF\vec { v } _ { f } - \vec { v } _ { i } = \frac { m t } { F } ,where m is mass,t is time,and F is the magnitude of force.Carla says that can't be true because the dimensions of force are [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] .Which one,if either,is correct?

A)Spike,because [v]=[MLT][ \vec { v } ] = \left[ \frac { M L } { T } \right] .
B)Spike,because [v]=[T2L][ \vec { v } ] = \left[ \frac { T ^ { 2 } } { L } \right] .
C)Carla,because [v]=[LT][ \vec { v } ] = \left[ \frac { L } { T } \right] .
D)Carla,because [v]=[LMT][ \overrightarrow { \mathrm { v } } ] = \left[ \frac { \mathrm { L } } { \mathrm { MT } } \right] .
E)Spike,because the dimensions of force are [F]=[T2ML][ \overrightarrow { \mathrm { F } } ] = \left[ \frac { \mathrm { T } ^ { 2 } } { \mathrm { ML } } \right] .
سؤال
Vectors A\overrightarrow { \mathbf { A } } and B\vec { B } are shown.What is the magnitude of a vector C\overrightarrow { \mathrm { C } } if C=AB\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  <strong>Vectors  \overrightarrow { \mathbf { A } }  and  \vec { B }  are shown.What is the magnitude of a vector  \overrightarrow { \mathrm { C } }  if  \overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  </strong> A)46 B)10 C)30 D)78 E)90 <div style=padding-top: 35px>

A)46
B)10
C)30
D)78
E)90
سؤال
Given that A+B=x1i^+y1j^\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and AB=x2i^+y2j^\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is B\vec { B } ?

A) B=12(x1x2)i^+12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
B) B=12(x1+x2)i^+12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
C) B=12(x1x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
D) B=12(x1+x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
E) B=12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
سؤال
Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-3.Which diagram below correctly represents AB+2C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } } ?

A)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Given that A+2B=x1i^+y1j^\overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and 2AB=x2i^+y2j^2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is A\overrightarrow { \mathrm { A } } ?

A) A=15(x1+2x2)i^+15(y1+2y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 2 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 2 y _ { 2 } \right) \hat { \mathbf { j } }
B) A=15(x12x2)i^+15(y12y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } - 2 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } - 2 y _ { 2 } \right) \hat { \mathbf { j } }
C) A=15(x1+4x2)i^+15(y1+2y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 2 y _ { 2 } \right) \hat { \mathbf { j } }
D) A=15(x1+4x2)i^+15(y1+4y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 4 y _ { 2 } \right) \hat { \mathbf { j } }
E) A=15(x1+4x2)i^+15(y14y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } - 4 y _ { 2 } \right) \hat { \mathbf { j } }
سؤال
If A=12i^16j^\overrightarrow { \mathbf { A } } = 12 \hat { \mathbf { i } } - 16 \hat { \mathbf { j } } and B=24i^+10j^\overrightarrow { \mathbf { B } } = - 24 \hat { \mathbf { i } } + 10 \hat { \mathbf { j } } ,what is the direction of the vector C=2AB\overrightarrow { \mathrm { C } } = 2 \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

A)-49 °\degree
B)-41 °\degree
C)-90 °\degree
D)+49 °\degree
E)+21 °\degree
سؤال
A vector, B\vec { B } ,when added to the vector C=3i^+4j^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } yields a resultant vector which is in the positive y direction and has a magnitude equal to that of C\overrightarrow { \mathrm { C } } .What is the magnitude of B\vec { B } ?

A)3.2
B)6.3
C)9.5
D)18
E)5
سؤال
If vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,the result is 9i^8j^- 9 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .If B\vec { B } is subtracted from C\overrightarrow { \mathrm { C } } ,the result is 5i~+4j^5 \tilde { \mathbf { i } } + 4 \hat { \mathbf { j } } .What is the direction of B\vec { B } (to the nearest degree)?

A)225 °\degree
B)221 °\degree
C)230 °\degree
D)236 °\degree
E)206 °\degree
سؤال
A rectangle has a length of 1.323 m and a width of 4.16 m.Using significant figure rules,what is the area of this rectangle?

A)5.503 68 m2
B)5.503 7 m2
C)5.504 m2
D)5.50 m2
E)5.5 m2
سؤال
If A=12i^16j^\overrightarrow { \mathbf { A } } = 12 \hat { \mathbf { i } } - 16 \hat { \mathbf { j } } and B=24i^+10j^\overrightarrow { \mathbf { B } } = - 24 \hat { \mathbf { i } } + 10 \hat { \mathbf { j } } ,what is the magnitude of the vector C=2AB\overrightarrow { \mathrm { C } } = 2 \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

A)42
B)22
C)64
D)90
E)13
سؤال
Anthony has added the vectors listed below and gotten the result R=9i^+4j^+6k^\overrightarrow { \mathbf { R } } = 9 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } + 6 \hat { \mathbf { k } } .What errors has he made? A=3i~+4j~5k~\overrightarrow { \mathbf { A } } = 3 \tilde { \mathbf { i } } + 4 \tilde{ \mathbf { j } } - 5 \tilde { \mathbf { k } } B=3i^+2j^+8k^\overrightarrow { \mathbf { B } } = - 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 8 \hat { \mathbf { k } } C=3i^2j^+2k^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }

A)He lost the minus sign in vector B\vec { B } .
B)He read the 2k~2 \tilde { \mathbf { k } } in C\overrightarrow { \mathrm { C } } as 3k~3 \tilde { \mathbf { k } } .
C)He lost the minus sign in vector A\overrightarrow { \mathrm { A } } .
D)All of the above are correct.
E)Only (a)and (b)above are correct.
سؤال
Given two non-zero vectors, A\overrightarrow { \mathbf { A } } and B\vec { B } ,such that A=A=B=B| \overrightarrow { \mathrm { A } } | = A = B = | \overrightarrow { \mathrm { B } } | ,the sum A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } satisfies

A) 0A+B2A0 \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 2 A .
B) 0<A+B<2A0 < | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | < 2 A .
C) AA+B2AA \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 2 A .
D) A<A+B<2AA < | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | < 2 A .
E) 0A+B4A0 \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 4 A .
سؤال
The diagram below shows 3 vectors which sum to zero,all of equal length.Which statement below is true?  <strong>The diagram below shows 3 vectors which sum to zero,all of equal length.Which statement below is true?  </strong> A)  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { C } }  B)  \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { C } }  C)  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { C } }  D)  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } }  E)  2 \overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { C } }  <div style=padding-top: 35px>

A) A+B=AC\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { C } }
B) A+B=BC\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { C } }
C) AB=2AC\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { C } }
D) AB=2A+C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } }
E) 2A+2B=2C2 \overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { C } }
سؤال
Given that A+B=x1i^+y1j^\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and AB=x2i^+y2j^\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is A\overrightarrow { \mathrm { A } } ?

A) A=12(x1x2)i^+12(y1y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
B) A=12(x1+x2)i^+12(y1y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
C) A=12(x1x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
D) A=12(x1+x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
E) A=12(x1+x2)i^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } }
سؤال
If vector B\vec { B } is added to vector A\overrightarrow { \mathrm { A } } ,the result is 6i~+j^6 \tilde { \mathbf { i } } + \hat { \mathbf { j } } .If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the result is 4i~+7j~- 4 \tilde { \mathbf { i } } + 7 \tilde { \mathbf { j } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)5.1
B)4.1
C)5.4
D)5.8
E)8.2
سؤال
Dana says any vector R\overrightarrow { \mathrm { R } } can be represented as the sum of two vectors: R=A+B\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .Ardis says any vector R\overrightarrow { \mathrm { R } } can be represented as the difference of two vectors: R=AB\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathbf { B } } .Which one,if either,is correct?

A)They are both wrong: every vector is unique.
B)Dana is correct: Any vector can be represented as a sum of components and not as a difference.
C)Ardis is correct: Any vector can be represented as a difference of vector components and not as a sum.
D)They are both correct: A difference of vectors is a sum
R=A+(B)\overrightarrow { \mathbf { R } } = \overrightarrow { \mathbf { A } } + ( - \overrightarrow { \mathbf { B } } ) .
E)They are both wrong: Vectors can be moved as long as they keep the same magnitude and direction.
سؤال
Adding vectors A\overrightarrow { \mathrm { A } } and B\vec { B } by the graphical method gives the same result for A\overrightarrow { \mathrm { A } } + B\vec { B } and B\vec { B } + A\overrightarrow { \mathrm { A } }
If both additions are done graphically from the same origin,the resultant is the vector that goes from the tail of the first vector to the tip of the second vector,i.e,it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure.Note that a parallelogram has 2 diagonals.Keara says that the sum of two vectors by the parallelogram method is R=5i^\overrightarrow { \mathbf { R } } = 5 \hat { \mathbf { i } }
Shamu says it is R=i^+4j^\overrightarrow { \mathbf { R } } = \hat { \mathbf { i } } + 4 \hat { \mathbf { j } }
Both used the parallelogram method,but one used the wrong diagonal.Which one of the vector pairs below contains the original two vectors?

A) A=3i^2j^\overrightarrow { \mathbf { A } } = - 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=2i^2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } }
B) A=+3i^2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=2i^+2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
C) A=3i^2j^\overrightarrow { \mathbf { A } } = - 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=+2i^+2j^\overrightarrow { \mathbf { B } } = + 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
D) A=+3i^2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=+2i^2j^\overrightarrow { \mathbf { B } } = + 2 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } }
E) A=+3i^+2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } ; B=2i^+2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
سؤال
Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-3.Which diagram below correctly represents A+B+C\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } ?

A)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Given the statement that AB=A+C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = - \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } } ,what can we conclude?

A) C=A\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } and B=A\overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { A } } .
B) 2A=B+C2 \overrightarrow { \mathbf { A } } = \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }
C) C=B\overrightarrow { \mathrm { C } } = - \overrightarrow { \mathrm { B } } and A=A- \overrightarrow { \mathbf { A } } = \overrightarrow { \mathbf { A } } .
D)Any one of the answers above is correct.
E)Only (a)and (b)may be correct.
سؤال
A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to that of A\overrightarrow { \mathrm { A } } .What is the direction of A\overrightarrow { \mathrm { A } } ?

A)74 °\degree
B)100 °\degree
C)-81 °\degree
D)-62 °\degree
E)106 °\degree
سؤال
A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)11
B)5.1
C)7.1
D)8.3
E)12.2
سؤال
The vector A\overrightarrow { \mathrm { A } } has components +5 and +7 along the x and y axes respectively.If the vector is now rotated 90 degrees counterclockwise relative to the original axes,the vector's components are now

A)-7;-5.
B)7;-5.
C)-7;5.
D)7;5.
E)7;0.
سؤال
When three vectors, A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are placed head to tail,the vector sum A+B+C=0\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } = 0 .If the vectors all have the same magnitude,the angle between the directions of any two adjacent vectors is

A)30 °\degree
B)60 °\degree
C)90 °\degree
D)120 °\degree
E)150 °\degree
سؤال
Exhibit 3-1
 <strong>Exhibit 3-1   The three forces shown act on a particle.  Use this exhibit to answer the following question(s)..  -Refer to Exhibit 3-1.What is the direction of the resultant of these three forces?</strong> A)35 \degree  B)45 \degree  C)65 \degree  D)55 \degree  E)85 \degree  <div style=padding-top: 35px>
The three forces shown act on a particle. Use this exhibit to answer the following question(s)..

-Refer to Exhibit 3-1.What is the direction of the resultant of these three forces?

A)35 °\degree
B)45 °\degree
C)65 °\degree
D)55 °\degree
E)85 °\degree
سؤال
The displacement of the tip of the 10 cm long minute hand of a clock between 12:15 A.M.and 12:45 P.M.is:

A)10 cm,90 °\degree
B)10 cm,180 °\degree
C)10 cm,4 500 °\degree
D)20 cm,180 °\degree
E)20 cm,540 °\degree
سؤال
Starting from one oasis,a camel walks 25 km in a direction 30 °\degree south of west and then walks 30 km toward the north to a second oasis.What distance separates the two oases?

A)15 km
B)48 km
C)28 km
D)53 km
E)55 km
سؤال
Which statement is true about the unit vectors î, ĵ and k̂ ?

A)Their directions are defined by a left-handed coordinate system.
B)The angle between any two is 90 degrees.
C)Each has a length of 1 m.
D)If î is directed east and ĵ is directed south, k̂ points up out of the surface.
E)All of the above.
سؤال
Starting from one oasis,a camel walks 25 km in a direction 30 °\degree south of west and then walks 30 km toward the north to a second oasis.What is the direction from the first oasis to the second oasis?

A)21 °\degree N of W
B)39 °\degree W of N
C)69 °\degree N of W
D)51 °\degree W of N
E)42 °\degree W of N
سؤال
Exhibit 3-1
<strong>Exhibit 3-1   The three forces shown act on a particle.  Use this exhibit to answer the following question(s).. Refer to Exhibit 3-1.What is the magnitude of the resultant of these three forces?</strong> A)27.0 N B)33.2 N C)36.3 N D)23.8 N E)105 N <div style=padding-top: 35px>
The three forces shown act on a particle. Use this exhibit to answer the following question(s)..
Refer to Exhibit 3-1.What is the magnitude of the resultant of these three forces?

A)27.0 N
B)33.2 N
C)36.3 N
D)23.8 N
E)105 N
سؤال
Exhibit 3-2
 <strong>Exhibit 3-2   A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-2.The child's displacement is:</strong> A)  2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }  B)  2.8 \tilde { \mathbf { i } } + 2.8 \tilde { \mathbf { j } } + 2 \tilde{ \mathbf { k } }  C)  2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 2.8 \tilde{ \mathbf { k } }  D)  2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 3.5 \tilde{ \mathbf { k } }  E)  3.5 \hat { \mathbf { i } } + 3.5 \hat { \mathbf { j } } + 3.5 \hat { \mathbf { k } }  <div style=padding-top: 35px>
A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-2.The child's displacement is:

A) 2i^+2j^+2k^2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }
B) 2.8i~+2.8j~+2k~2.8 \tilde { \mathbf { i } } + 2.8 \tilde { \mathbf { j } } + 2 \tilde{ \mathbf { k } }
C) 2i~+2j~+2.8k~2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 2.8 \tilde{ \mathbf { k } }
D) 2i~+2j~+3.5k~2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 3.5 \tilde{ \mathbf { k } }
E) 3.5i^+3.5j^+3.5k^3.5 \hat { \mathbf { i } } + 3.5 \hat { \mathbf { j } } + 3.5 \hat { \mathbf { k } }
سؤال
If vector C\overrightarrow { \mathrm { C } } is added to vector D\overrightarrow { \mathrm { D } } ,the result is a third vector that is perpendicular to D\overrightarrow { \mathrm { D } } and has a magnitude equal to 3 D\overrightarrow { \mathrm { D } } .What is the ratio of the magnitude of C\overrightarrow { \mathrm { C } } to that of D\overrightarrow { \mathrm { D } } ?

A)1.8
B)2.2
C)3.2
D)1.3
E)1.6
سؤال
Exhibit 3-4
<strong>Exhibit 3-4   The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind.  Use this exhibit to answer the following question(s). Refer to Exhibit 3-4.The total distance it travels is</strong> A)1 000 m. B)1 732 m. C)2 000 m. D)6 298 m. E)8 000 m. <div style=padding-top: 35px>
The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-4.The total distance it travels is

A)1 000 m.
B)1 732 m.
C)2 000 m.
D)6 298 m.
E)8 000 m.
سؤال
If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\overrightarrow { \mathbf { B } } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.0
B)3.0
C)4.0
D)5.0
E)6.0
سؤال
Exhibit 3-2
<strong>Exhibit 3-2   A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s). Refer to Exhibit 3-2.What is the child's distance from her starting position?</strong> A)2.8 m B)3.5 m C)6.0 m D)6.9 m E)12.0 m <div style=padding-top: 35px>
A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-2.What is the child's distance from her starting position?

A)2.8 m
B)3.5 m
C)6.0 m
D)6.9 m
E)12.0 m
سؤال
A student decides to spend spring break by driving 50 miles due east,then 50 miles 30 degrees south of east,then 50 miles 30 degrees south of that direction,and to continue to drive 50 miles deviating by 30 degrees each time until he returns to his original position.How far will he drive,and how many vectors must he sum to calculate his displacement?

A)0,0
B)0,8
C)0,12
D)400 mi,8
E)600 mi,12
سؤال
Exhibit 3-4
<strong>Exhibit 3-4   The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind.  Use this exhibit to answer the following question(s). Refer to Exhibit 3-4.The total displacement of the sailboat,the vector sum of its displacements OB,BC,CD and DE,is</strong> A)1 732 m,East. B)2 000 m,Northeast. C)6 298 m,East. D)8 000 m,Southeast. E)8 000 m,East. <div style=padding-top: 35px>
The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-4.The total displacement of the sailboat,the vector sum of its displacements OB,BC,CD and DE,is

A)1 732 m,East.
B)2 000 m,Northeast.
C)6 298 m,East.
D)8 000 m,Southeast.
E)8 000 m,East.
سؤال
Vectors A\overrightarrow { \mathrm { A } } and B\vec { B } have equal magnitudes.Which statement is always true?

A) A+B=0\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = 0 .
B) AB=0\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 0 .
C) AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } is perpendicular to A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .
D) BA\overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { A } } is perpendicular to AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } .
E)The magnitude of AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } equals the magnitude of A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .
سؤال
When vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,which has a magnitude of 5.0,the vector representing their sum is perpendicular to A\overrightarrow { \mathrm { A } } and has a magnitude that is twice that of A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.2
B)2.5
C)4.5
D)5.0
E)7.0
سؤال
The rectangular coordinates of a point are (5.00,y)and the polar coordinates of this point are (r,67.4°).What is the value of the polar coordinate r in this case?

A)1.92
B)4.62
C)12.0
D)13.0
E)More information is needed.
سؤال
The vector A\overrightarrow { \mathrm { A } } has components +5 and +7 along the x and y axes respectively.Along a set of axes rotated 90 degrees counterclockwise relative to the original axes,the vector's components are

A)-7;-5.
B)7;-5.
C)-7;5.
D)7;5.
E)7;0.
سؤال
If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.0
B)3.0
C)4.0
D)5.0
E)6.0
سؤال
What is the mass of air in a room that measures 5.0 m * 8.0 m * 3.0 m? (The density of air is 1/800 that of water).
سؤال
A vector starts at coordinate (3.0,4.0)and ends at coordinate (-2.0,16.0).What are the magnitude and direction of this vector?
سؤال
The basic function of a carburetor of an automobile is to atomize the gasoline and mix it with air to promote rapid combustion.As an example,assume that 30 cm3 of gasoline is atomized into N spherical droplets,each with a radius of 2.0 *10 - 5 m.What is the total surface area of these N spherical droplets?
سؤال
The standard kilogram is a platinum-iridium cylinder 39 mm in height and 39 mm in diameter.What is the density of the material?
سؤال
A 2.00 m by 3.00 m plate of aluminum has a mass of 324 kg.What is the thickness of the plate? (The density of aluminum is 2.70 * 103 kg/m3. )
سؤال
What two vectors are each the same magnitude as and perpendicular to What two vectors are each the same magnitude as and perpendicular to   ? <div style=padding-top: 35px> ?
سؤال
A problem may be solved more easily when alternative representations are used.The best strategy is to formulate representations in an order that assists in understanding the physical principles involved.Of the orders given below,the one that will work best most often is

A)pictorial representation,mathematical representation,tabular representation,mental representation.
B)pictorial representation,mental representation,mathematical representation,tabular representation.
C)mathematical representation,pictorial representation,tabular representation,mental representation.
D)mathematical representation,tabular representation,mental representation,pictorial representation.
E)mental representation,pictorial representation,tabular representation,mathematical representation.
سؤال
In what quadrant are both the sine and tangent negative?

A)1st
B)2nd
C)3rd
D)4th
E)This cannot happen.
سؤال
Two vectors starting at the same origin have equal and opposite x components.Is it possible for the two vectors to be perpendicular to each other? Justify your answer.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/69
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 1: Introduction and Vectors
1
One U.S.fluid gallon contains a volume of 231 cubic inches.How many liters of gasoline would you have to buy in Canada to fill a 14-gallon tank? (Note: 1L = 10+3 cm3. )

A)53
B)21
C)14
D)8.0
E)4.0
53
2
John and Linda are arguing about the definition of density.John says the density of an object is proportional to its mass.Linda says the object's mass is proportional to its density and to its volume.Which one,if either,is correct?

A)They are both wrong.
B)John is correct,but Linda is wrong.
C)John is wrong,but Linda is correct.
D)They are both correct.
E)They are free to redefine density as they wish.
They are both correct.
3
Which one of the quantities below has dimensions equal to [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] ?

A)mv
B)mv2
C) mv2r\frac { m v ^ { 2 } } { r }
D)mrv
E) mv2r2\frac { m v ^ { 2 } } { r ^ { 2 } }
mv2r\frac { m v ^ { 2 } } { r }
4
If you drove day and night without stopping for one year without exceeding the legal highway speed limit in the United States,the maximum number of miles you could drive would be closest to:

A)8 700.
B)300 000.
C)500 000.
D)1 000 000.
E)32 000 000.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
5
If each frame of a motion picture film is 35 cm high,and 24 frames go by in a second,estimate how many frames are needed to show a two hour long movie.

A)1 400
B)25 000
C)50 000
D)170 000
E)This cannot be determined without knowing how many reels were used.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
6
Which of the following products of ratios gives the conversion factor to convert miles per hour (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right) to meters per second (ms)\left( \frac { \mathrm { m } } { \mathrm { s } } \right) ?

A) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
B) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
D) 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
E) 5280fmi12inf2.54 cm1in1 m100 cm3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
7
One number has three significant figures and another number has four significant figures.If these numbers are added,subtracted,multiplied,or divided,which operation can produce the greatest number of significant figures?

A)the addition
B)the subtraction
C)the multiplication
D)the division
E)All the operations result in the same number of significant figures.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
8
The density of an object is defined as:

A)the volume occupied by each unit of mass.
B)the amount of mass for each unit of volume.
C)the weight of each unit of volume.
D)the amount of the substance that has unit volume and unit mass.
E)the amount of the substance that contains as many particles as 12 grams of the carbon-12 isotope.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
9
The answer to a question is [MLT - 1].The question is "What are the dimensions of

A)mr?"
B)mvr?"
C)ma?"
D)mat?"
E) mv2r\frac { m v ^ { 2 } } { r } ?"
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
10
The quantity with the same units as force times time,Ft,with dimensions MLT - 1 is

A)mv
B)mvr
C)mv2r
D)ma
E) mv2r\frac { m v ^ { 2 } } { r }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
11
A standard exam page is 8.5 inches by 11 inches.An exam that is 2.0 mm thick has a volume of

A)1.9 * 104 mm3.
B)4.7 * 104 mm3.
C)1.2 *105 mm3.
D)3.1 * 105 mm3.
E)3.1 * 103 mm3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
12
The equation for the change of position of a train starting at x = 0 m is given by x=12at2+bt3x = \frac { 1 } { 2 } a t ^ { 2 } + b t ^ { 3 } .The dimensions of b are

A)T - 3
B)LT - 3
C)LT - 2
D)LT - 1
E)L - 1T - 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
13
One mole of the carbon-12 isotope contains 6.022 * 1023 atoms.What volume in m3 would be needed to store one mole of cube-shaped children's blocks 2.00 cm long on each side?

A)4.8 * 1018
B)1.2 *1022
C)6.0 * 1023
D)1.2 *1024
E)4.8 *1024
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
14
Which of the following products of ratios gives the conversion factors to convert meters per second (ms)\left( \frac { \mathrm { m } } { \mathrm { s } } \right) to miles per hour (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right) ?

A) 5280fmi12inf2.54 cm1in100 cm1 m3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
B) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
D) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
E) 1mi5280f1f12in1in2.54 cm1 m100 cm3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the average density of a red giant star with a mass of 20 * 1030 kg (approximately 10 solar masses)and a radius of 150 *109 m (equal to the Earth's distance from the sun).

A)1.41*10-4 kg/m3
B)0.007 kg/m3
C)1.41 kg/m3
D)710 kg/m3
E)1.41*10 - 3 kg/m3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
16
Which of the following quantities has the same dimensions as kinetic energy, 12mv2\frac { 1 } { 2 } m v ^ { 2 } ? Note: [a] = [g] = LT - 2;[h] = L and [v] = LT - 1.

A)ma
B)mvx
C)mvt
D)mgh
E)mgt
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
17
Which quantity can be converted from the English system to the metric system by the conversion factor 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} } ?

A)feet per second
B)feet per hour
C)miles per second
D)miles per hour
E)miles per minute
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
18
The term 12ρv2\frac { 1 } { 2 } \rho v ^ { 2 } occurs in Bernoulli's equation in Chapter 15,with ρ\rho being the density of a fluid and v its speed.The dimensions of this term are

A)M - 1L5T2
B)MLT2
C)ML - 1T - 2
D)M - 1L9T - 2
E)M - 1L3T - 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
19
Find the average density of a white dwarf star if it has a mass equal to that of the sun (2.0 * 1030 kg)and a radius equal to that of the Earth (6.4*106 m).

A)9.0 * 106 kg/m3
B)1.8* 107 kg/m3
C)1.8 * 109 kg/m3
D)3.6 * 1010 kg/m3
E)9.0 *107 kg/m3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
20
Spike claims that dimensional analysis shows that the correct expression for change in velocity, vfvi\vec { v } _ { f } - \vec { v } _ { i } ,is vfvi=mtF\vec { v } _ { f } - \vec { v } _ { i } = \frac { m t } { F } ,where m is mass,t is time,and F is the magnitude of force.Carla says that can't be true because the dimensions of force are [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] .Which one,if either,is correct?

A)Spike,because [v]=[MLT][ \vec { v } ] = \left[ \frac { M L } { T } \right] .
B)Spike,because [v]=[T2L][ \vec { v } ] = \left[ \frac { T ^ { 2 } } { L } \right] .
C)Carla,because [v]=[LT][ \vec { v } ] = \left[ \frac { L } { T } \right] .
D)Carla,because [v]=[LMT][ \overrightarrow { \mathrm { v } } ] = \left[ \frac { \mathrm { L } } { \mathrm { MT } } \right] .
E)Spike,because the dimensions of force are [F]=[T2ML][ \overrightarrow { \mathrm { F } } ] = \left[ \frac { \mathrm { T } ^ { 2 } } { \mathrm { ML } } \right] .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
21
Vectors A\overrightarrow { \mathbf { A } } and B\vec { B } are shown.What is the magnitude of a vector C\overrightarrow { \mathrm { C } } if C=AB\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  <strong>Vectors  \overrightarrow { \mathbf { A } }  and  \vec { B }  are shown.What is the magnitude of a vector  \overrightarrow { \mathrm { C } }  if  \overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  </strong> A)46 B)10 C)30 D)78 E)90

A)46
B)10
C)30
D)78
E)90
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
22
Given that A+B=x1i^+y1j^\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and AB=x2i^+y2j^\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is B\vec { B } ?

A) B=12(x1x2)i^+12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
B) B=12(x1+x2)i^+12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
C) B=12(x1x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
D) B=12(x1+x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
E) B=12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
23
Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)    Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-3.Which diagram below correctly represents AB+2C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } } ?

A)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
B)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
C)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
D)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
E)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
24
Given that A+2B=x1i^+y1j^\overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and 2AB=x2i^+y2j^2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is A\overrightarrow { \mathrm { A } } ?

A) A=15(x1+2x2)i^+15(y1+2y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 2 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 2 y _ { 2 } \right) \hat { \mathbf { j } }
B) A=15(x12x2)i^+15(y12y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } - 2 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } - 2 y _ { 2 } \right) \hat { \mathbf { j } }
C) A=15(x1+4x2)i^+15(y1+2y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 2 y _ { 2 } \right) \hat { \mathbf { j } }
D) A=15(x1+4x2)i^+15(y1+4y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 4 y _ { 2 } \right) \hat { \mathbf { j } }
E) A=15(x1+4x2)i^+15(y14y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } - 4 y _ { 2 } \right) \hat { \mathbf { j } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
25
If A=12i^16j^\overrightarrow { \mathbf { A } } = 12 \hat { \mathbf { i } } - 16 \hat { \mathbf { j } } and B=24i^+10j^\overrightarrow { \mathbf { B } } = - 24 \hat { \mathbf { i } } + 10 \hat { \mathbf { j } } ,what is the direction of the vector C=2AB\overrightarrow { \mathrm { C } } = 2 \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

A)-49 °\degree
B)-41 °\degree
C)-90 °\degree
D)+49 °\degree
E)+21 °\degree
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
26
A vector, B\vec { B } ,when added to the vector C=3i^+4j^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } yields a resultant vector which is in the positive y direction and has a magnitude equal to that of C\overrightarrow { \mathrm { C } } .What is the magnitude of B\vec { B } ?

A)3.2
B)6.3
C)9.5
D)18
E)5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
27
If vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,the result is 9i^8j^- 9 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .If B\vec { B } is subtracted from C\overrightarrow { \mathrm { C } } ,the result is 5i~+4j^5 \tilde { \mathbf { i } } + 4 \hat { \mathbf { j } } .What is the direction of B\vec { B } (to the nearest degree)?

A)225 °\degree
B)221 °\degree
C)230 °\degree
D)236 °\degree
E)206 °\degree
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
28
A rectangle has a length of 1.323 m and a width of 4.16 m.Using significant figure rules,what is the area of this rectangle?

A)5.503 68 m2
B)5.503 7 m2
C)5.504 m2
D)5.50 m2
E)5.5 m2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
29
If A=12i^16j^\overrightarrow { \mathbf { A } } = 12 \hat { \mathbf { i } } - 16 \hat { \mathbf { j } } and B=24i^+10j^\overrightarrow { \mathbf { B } } = - 24 \hat { \mathbf { i } } + 10 \hat { \mathbf { j } } ,what is the magnitude of the vector C=2AB\overrightarrow { \mathrm { C } } = 2 \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

A)42
B)22
C)64
D)90
E)13
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
30
Anthony has added the vectors listed below and gotten the result R=9i^+4j^+6k^\overrightarrow { \mathbf { R } } = 9 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } + 6 \hat { \mathbf { k } } .What errors has he made? A=3i~+4j~5k~\overrightarrow { \mathbf { A } } = 3 \tilde { \mathbf { i } } + 4 \tilde{ \mathbf { j } } - 5 \tilde { \mathbf { k } } B=3i^+2j^+8k^\overrightarrow { \mathbf { B } } = - 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 8 \hat { \mathbf { k } } C=3i^2j^+2k^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }

A)He lost the minus sign in vector B\vec { B } .
B)He read the 2k~2 \tilde { \mathbf { k } } in C\overrightarrow { \mathrm { C } } as 3k~3 \tilde { \mathbf { k } } .
C)He lost the minus sign in vector A\overrightarrow { \mathrm { A } } .
D)All of the above are correct.
E)Only (a)and (b)above are correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
31
Given two non-zero vectors, A\overrightarrow { \mathbf { A } } and B\vec { B } ,such that A=A=B=B| \overrightarrow { \mathrm { A } } | = A = B = | \overrightarrow { \mathrm { B } } | ,the sum A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } satisfies

A) 0A+B2A0 \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 2 A .
B) 0<A+B<2A0 < | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | < 2 A .
C) AA+B2AA \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 2 A .
D) A<A+B<2AA < | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | < 2 A .
E) 0A+B4A0 \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 4 A .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
32
The diagram below shows 3 vectors which sum to zero,all of equal length.Which statement below is true?  <strong>The diagram below shows 3 vectors which sum to zero,all of equal length.Which statement below is true?  </strong> A)  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { C } }  B)  \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { C } }  C)  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { C } }  D)  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } }  E)  2 \overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { C } }

A) A+B=AC\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { C } }
B) A+B=BC\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { C } }
C) AB=2AC\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { C } }
D) AB=2A+C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } }
E) 2A+2B=2C2 \overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { C } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
33
Given that A+B=x1i^+y1j^\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and AB=x2i^+y2j^\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is A\overrightarrow { \mathrm { A } } ?

A) A=12(x1x2)i^+12(y1y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
B) A=12(x1+x2)i^+12(y1y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
C) A=12(x1x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
D) A=12(x1+x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
E) A=12(x1+x2)i^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
34
If vector B\vec { B } is added to vector A\overrightarrow { \mathrm { A } } ,the result is 6i~+j^6 \tilde { \mathbf { i } } + \hat { \mathbf { j } } .If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the result is 4i~+7j~- 4 \tilde { \mathbf { i } } + 7 \tilde { \mathbf { j } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)5.1
B)4.1
C)5.4
D)5.8
E)8.2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
35
Dana says any vector R\overrightarrow { \mathrm { R } } can be represented as the sum of two vectors: R=A+B\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .Ardis says any vector R\overrightarrow { \mathrm { R } } can be represented as the difference of two vectors: R=AB\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathbf { B } } .Which one,if either,is correct?

A)They are both wrong: every vector is unique.
B)Dana is correct: Any vector can be represented as a sum of components and not as a difference.
C)Ardis is correct: Any vector can be represented as a difference of vector components and not as a sum.
D)They are both correct: A difference of vectors is a sum
R=A+(B)\overrightarrow { \mathbf { R } } = \overrightarrow { \mathbf { A } } + ( - \overrightarrow { \mathbf { B } } ) .
E)They are both wrong: Vectors can be moved as long as they keep the same magnitude and direction.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
36
Adding vectors A\overrightarrow { \mathrm { A } } and B\vec { B } by the graphical method gives the same result for A\overrightarrow { \mathrm { A } } + B\vec { B } and B\vec { B } + A\overrightarrow { \mathrm { A } }
If both additions are done graphically from the same origin,the resultant is the vector that goes from the tail of the first vector to the tip of the second vector,i.e,it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure.Note that a parallelogram has 2 diagonals.Keara says that the sum of two vectors by the parallelogram method is R=5i^\overrightarrow { \mathbf { R } } = 5 \hat { \mathbf { i } }
Shamu says it is R=i^+4j^\overrightarrow { \mathbf { R } } = \hat { \mathbf { i } } + 4 \hat { \mathbf { j } }
Both used the parallelogram method,but one used the wrong diagonal.Which one of the vector pairs below contains the original two vectors?

A) A=3i^2j^\overrightarrow { \mathbf { A } } = - 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=2i^2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } }
B) A=+3i^2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=2i^+2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
C) A=3i^2j^\overrightarrow { \mathbf { A } } = - 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=+2i^+2j^\overrightarrow { \mathbf { B } } = + 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
D) A=+3i^2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=+2i^2j^\overrightarrow { \mathbf { B } } = + 2 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } }
E) A=+3i^+2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } ; B=2i^+2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
37
Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)    Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-3.Which diagram below correctly represents A+B+C\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } ?

A)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
B)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
C)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
D)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
E)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
38
Given the statement that AB=A+C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = - \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } } ,what can we conclude?

A) C=A\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } and B=A\overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { A } } .
B) 2A=B+C2 \overrightarrow { \mathbf { A } } = \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }
C) C=B\overrightarrow { \mathrm { C } } = - \overrightarrow { \mathrm { B } } and A=A- \overrightarrow { \mathbf { A } } = \overrightarrow { \mathbf { A } } .
D)Any one of the answers above is correct.
E)Only (a)and (b)may be correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
39
A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to that of A\overrightarrow { \mathrm { A } } .What is the direction of A\overrightarrow { \mathrm { A } } ?

A)74 °\degree
B)100 °\degree
C)-81 °\degree
D)-62 °\degree
E)106 °\degree
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
40
A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)11
B)5.1
C)7.1
D)8.3
E)12.2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
41
The vector A\overrightarrow { \mathrm { A } } has components +5 and +7 along the x and y axes respectively.If the vector is now rotated 90 degrees counterclockwise relative to the original axes,the vector's components are now

A)-7;-5.
B)7;-5.
C)-7;5.
D)7;5.
E)7;0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
42
When three vectors, A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are placed head to tail,the vector sum A+B+C=0\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } = 0 .If the vectors all have the same magnitude,the angle between the directions of any two adjacent vectors is

A)30 °\degree
B)60 °\degree
C)90 °\degree
D)120 °\degree
E)150 °\degree
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
43
Exhibit 3-1
 <strong>Exhibit 3-1   The three forces shown act on a particle.  Use this exhibit to answer the following question(s)..  -Refer to Exhibit 3-1.What is the direction of the resultant of these three forces?</strong> A)35 \degree  B)45 \degree  C)65 \degree  D)55 \degree  E)85 \degree
The three forces shown act on a particle. Use this exhibit to answer the following question(s)..

-Refer to Exhibit 3-1.What is the direction of the resultant of these three forces?

A)35 °\degree
B)45 °\degree
C)65 °\degree
D)55 °\degree
E)85 °\degree
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
44
The displacement of the tip of the 10 cm long minute hand of a clock between 12:15 A.M.and 12:45 P.M.is:

A)10 cm,90 °\degree
B)10 cm,180 °\degree
C)10 cm,4 500 °\degree
D)20 cm,180 °\degree
E)20 cm,540 °\degree
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
45
Starting from one oasis,a camel walks 25 km in a direction 30 °\degree south of west and then walks 30 km toward the north to a second oasis.What distance separates the two oases?

A)15 km
B)48 km
C)28 km
D)53 km
E)55 km
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
46
Which statement is true about the unit vectors î, ĵ and k̂ ?

A)Their directions are defined by a left-handed coordinate system.
B)The angle between any two is 90 degrees.
C)Each has a length of 1 m.
D)If î is directed east and ĵ is directed south, k̂ points up out of the surface.
E)All of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
47
Starting from one oasis,a camel walks 25 km in a direction 30 °\degree south of west and then walks 30 km toward the north to a second oasis.What is the direction from the first oasis to the second oasis?

A)21 °\degree N of W
B)39 °\degree W of N
C)69 °\degree N of W
D)51 °\degree W of N
E)42 °\degree W of N
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
48
Exhibit 3-1
<strong>Exhibit 3-1   The three forces shown act on a particle.  Use this exhibit to answer the following question(s).. Refer to Exhibit 3-1.What is the magnitude of the resultant of these three forces?</strong> A)27.0 N B)33.2 N C)36.3 N D)23.8 N E)105 N
The three forces shown act on a particle. Use this exhibit to answer the following question(s)..
Refer to Exhibit 3-1.What is the magnitude of the resultant of these three forces?

A)27.0 N
B)33.2 N
C)36.3 N
D)23.8 N
E)105 N
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
49
Exhibit 3-2
 <strong>Exhibit 3-2   A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-2.The child's displacement is:</strong> A)  2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }  B)  2.8 \tilde { \mathbf { i } } + 2.8 \tilde { \mathbf { j } } + 2 \tilde{ \mathbf { k } }  C)  2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 2.8 \tilde{ \mathbf { k } }  D)  2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 3.5 \tilde{ \mathbf { k } }  E)  3.5 \hat { \mathbf { i } } + 3.5 \hat { \mathbf { j } } + 3.5 \hat { \mathbf { k } }
A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-2.The child's displacement is:

A) 2i^+2j^+2k^2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }
B) 2.8i~+2.8j~+2k~2.8 \tilde { \mathbf { i } } + 2.8 \tilde { \mathbf { j } } + 2 \tilde{ \mathbf { k } }
C) 2i~+2j~+2.8k~2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 2.8 \tilde{ \mathbf { k } }
D) 2i~+2j~+3.5k~2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 3.5 \tilde{ \mathbf { k } }
E) 3.5i^+3.5j^+3.5k^3.5 \hat { \mathbf { i } } + 3.5 \hat { \mathbf { j } } + 3.5 \hat { \mathbf { k } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
50
If vector C\overrightarrow { \mathrm { C } } is added to vector D\overrightarrow { \mathrm { D } } ,the result is a third vector that is perpendicular to D\overrightarrow { \mathrm { D } } and has a magnitude equal to 3 D\overrightarrow { \mathrm { D } } .What is the ratio of the magnitude of C\overrightarrow { \mathrm { C } } to that of D\overrightarrow { \mathrm { D } } ?

A)1.8
B)2.2
C)3.2
D)1.3
E)1.6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
51
Exhibit 3-4
<strong>Exhibit 3-4   The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind.  Use this exhibit to answer the following question(s). Refer to Exhibit 3-4.The total distance it travels is</strong> A)1 000 m. B)1 732 m. C)2 000 m. D)6 298 m. E)8 000 m.
The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-4.The total distance it travels is

A)1 000 m.
B)1 732 m.
C)2 000 m.
D)6 298 m.
E)8 000 m.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
52
If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\overrightarrow { \mathbf { B } } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.0
B)3.0
C)4.0
D)5.0
E)6.0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
53
Exhibit 3-2
<strong>Exhibit 3-2   A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s). Refer to Exhibit 3-2.What is the child's distance from her starting position?</strong> A)2.8 m B)3.5 m C)6.0 m D)6.9 m E)12.0 m
A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-2.What is the child's distance from her starting position?

A)2.8 m
B)3.5 m
C)6.0 m
D)6.9 m
E)12.0 m
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
54
A student decides to spend spring break by driving 50 miles due east,then 50 miles 30 degrees south of east,then 50 miles 30 degrees south of that direction,and to continue to drive 50 miles deviating by 30 degrees each time until he returns to his original position.How far will he drive,and how many vectors must he sum to calculate his displacement?

A)0,0
B)0,8
C)0,12
D)400 mi,8
E)600 mi,12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
55
Exhibit 3-4
<strong>Exhibit 3-4   The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind.  Use this exhibit to answer the following question(s). Refer to Exhibit 3-4.The total displacement of the sailboat,the vector sum of its displacements OB,BC,CD and DE,is</strong> A)1 732 m,East. B)2 000 m,Northeast. C)6 298 m,East. D)8 000 m,Southeast. E)8 000 m,East.
The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-4.The total displacement of the sailboat,the vector sum of its displacements OB,BC,CD and DE,is

A)1 732 m,East.
B)2 000 m,Northeast.
C)6 298 m,East.
D)8 000 m,Southeast.
E)8 000 m,East.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
56
Vectors A\overrightarrow { \mathrm { A } } and B\vec { B } have equal magnitudes.Which statement is always true?

A) A+B=0\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = 0 .
B) AB=0\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 0 .
C) AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } is perpendicular to A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .
D) BA\overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { A } } is perpendicular to AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } .
E)The magnitude of AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } equals the magnitude of A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
57
When vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,which has a magnitude of 5.0,the vector representing their sum is perpendicular to A\overrightarrow { \mathrm { A } } and has a magnitude that is twice that of A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.2
B)2.5
C)4.5
D)5.0
E)7.0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
58
The rectangular coordinates of a point are (5.00,y)and the polar coordinates of this point are (r,67.4°).What is the value of the polar coordinate r in this case?

A)1.92
B)4.62
C)12.0
D)13.0
E)More information is needed.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
59
The vector A\overrightarrow { \mathrm { A } } has components +5 and +7 along the x and y axes respectively.Along a set of axes rotated 90 degrees counterclockwise relative to the original axes,the vector's components are

A)-7;-5.
B)7;-5.
C)-7;5.
D)7;5.
E)7;0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
60
If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.0
B)3.0
C)4.0
D)5.0
E)6.0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
61
What is the mass of air in a room that measures 5.0 m * 8.0 m * 3.0 m? (The density of air is 1/800 that of water).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
62
A vector starts at coordinate (3.0,4.0)and ends at coordinate (-2.0,16.0).What are the magnitude and direction of this vector?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
63
The basic function of a carburetor of an automobile is to atomize the gasoline and mix it with air to promote rapid combustion.As an example,assume that 30 cm3 of gasoline is atomized into N spherical droplets,each with a radius of 2.0 *10 - 5 m.What is the total surface area of these N spherical droplets?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
64
The standard kilogram is a platinum-iridium cylinder 39 mm in height and 39 mm in diameter.What is the density of the material?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
65
A 2.00 m by 3.00 m plate of aluminum has a mass of 324 kg.What is the thickness of the plate? (The density of aluminum is 2.70 * 103 kg/m3. )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
66
What two vectors are each the same magnitude as and perpendicular to What two vectors are each the same magnitude as and perpendicular to   ? ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
67
A problem may be solved more easily when alternative representations are used.The best strategy is to formulate representations in an order that assists in understanding the physical principles involved.Of the orders given below,the one that will work best most often is

A)pictorial representation,mathematical representation,tabular representation,mental representation.
B)pictorial representation,mental representation,mathematical representation,tabular representation.
C)mathematical representation,pictorial representation,tabular representation,mental representation.
D)mathematical representation,tabular representation,mental representation,pictorial representation.
E)mental representation,pictorial representation,tabular representation,mathematical representation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
68
In what quadrant are both the sine and tangent negative?

A)1st
B)2nd
C)3rd
D)4th
E)This cannot happen.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
69
Two vectors starting at the same origin have equal and opposite x components.Is it possible for the two vectors to be perpendicular to each other? Justify your answer.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 69 في هذه المجموعة.