Deck 6: An Introduction to Trigonometry Via Right Triangles

ملء الشاشة (f)
exit full mode
سؤال
From a point on ground level, you measure the angle of elevation to the top of a mountain to be 3737 ^ { \circ } . Then you walk 150 m150 \mathrm {~m} farther away from the mountain and find that the angle of elevation is now 2020 ^ { \circ } . Find the height of the mountain.

A) 5555 m
B) 8484 m
C) 8181 m
D) 113113 m
E) 106106 m
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
In ACD\triangle A C D , you are given C=90,A=60\angle C = 90 ^ { \circ } , \angle A = 60 ^ { \circ } and AC=9A C = 9 . If BB is a point on CD\overline { C D } and BAC=45\angle B A C = 45 ^ { \circ } , find BDB D .

A) BD=6B D = 6
B) BD=B D = 3(33)3 ( 3 - \sqrt { 3 } )
C) BD=B D = 636 \sqrt { 3 }
D) BD=3B D = 3
E) BD=B D = 9(31)9 ( \sqrt { 3 } - 1 )
سؤال
The radius of the circle in the figure is 2 units. Express the length DCD C in terms of α\alpha .  <strong>The radius of the circle in the figure is 2 units. Express the length  D C  in terms of  \alpha  .  </strong> A)  2 \cos \alpha  B)  2 \cot \alpha  C)  2 \sin \alpha  D)  2 \tan \alpha  E)  2 \sec \alpha  <div style=padding-top: 35px>

A) 2cosα2 \cos \alpha
B) 2cotα2 \cot \alpha
C) 2sinα2 \sin \alpha
D) 2tanα2 \tan \alpha
E) 2secα2 \sec \alpha
سؤال
Find the area of the triangle. Use a calculator and round your final answer to two decimal places.  <strong>Find the area of the triangle. Use a calculator and round your final answer to two decimal places.  </strong> A)  2.08 \mathrm {~cm} ^ { 2 }  B)  5.91 \mathrm {~cm} ^ { 2 }  C)  11.82 \mathrm {~cm} ^ { 2 }  D)  1.04 \mathrm {~cm} ^ { 2 }  E)  2.95 \mathrm {~cm} ^ { 2 }  <div style=padding-top: 35px>

A) 2.08 cm22.08 \mathrm {~cm} ^ { 2 }
B) 5.91 cm25.91 \mathrm {~cm} ^ { 2 }
C) 11.82 cm211.82 \mathrm {~cm} ^ { 2 }
D) 1.04 cm21.04 \mathrm {~cm} ^ { 2 }
E) 2.95 cm22.95 \mathrm {~cm} ^ { 2 }
سؤال
Refer to the figure. If A=60\angle A = 60 ^ { \circ } and AB=40 cmA B = 40 \mathrm {~cm} , find ACA C .  <strong>Refer to the figure. If  \angle A = 60 ^ { \circ }  and  A B = 40 \mathrm {~cm}  , find  A C  .  </strong> A)  A C = 40 \sqrt { 3 }  cm B)  A C = 20  cm C)  A C = 40  cm D)  A C = \sqrt { 3 }  cm E)  A C = 20 \sqrt { 5 }  cm <div style=padding-top: 35px>

A) AC=403A C = 40 \sqrt { 3 } cm
B) AC=20A C = 20 cm
C) AC=40A C = 40 cm
D) AC=3A C = \sqrt { 3 } cm
E) AC=205A C = 20 \sqrt { 5 } cm
سؤال
Use the definitions to evaluate the six trigonometric functions of θ\theta . In cases in which a radical occurs in a denominator, rationalize the denominator.  <strong>Use the definitions to evaluate the six trigonometric functions of  \theta  . In cases in which a radical occurs in a denominator, rationalize the denominator.  </strong> A)  \sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5   \cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }  B)  \sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2   \cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }  C)  \sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 }   \cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }  D)  \sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 }   \cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }  E)  \sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2   \cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }  <div style=padding-top: 35px>

A) sinθ=52,tanθ=552,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5 cosθ=5,cotθ=52,secθ=15\cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }
B) sinθ=115,tanθ=2117,cscθ=2\sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2 cosθ=11,cotθ=112,secθ=17\cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }
C) sinθ=455,tanθ=4,cscθ=54\sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 } cosθ=52,cotθ=14,secθ=5\cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }
D) sinθ=55,tanθ=12,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 } cosθ=255,cotθ=2,secθ=52\cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }
E) sinθ=75,tanθ=275,cscθ=2\sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2 cosθ=7,cotθ=72,secθ=12\cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }
سؤال
Evaluate the expression using the concept of a reference angle. sin(150)\sin \left( - 150 ^ { \circ } \right)

A) 66\frac { \sqrt { 6 } } { 6 }
B) 62\frac { \sqrt { 6 } } { 2 }
C) 12\frac { 1 } { 2 }
D) 12- \frac { 1 } { 2 }
E) 16- \frac { 1 } { 6 }
سؤال
Suppose that ABC\triangle A B C is a right triangle with C=90\angle C = 90 ^ { \circ } . If AB=3A B = 3 and BC=332B C = \frac { 3 \sqrt { 3 } } { 2 } , find the quantities. cosA,sinB\cos A , \sin B

A) cosA=13,sinB=32\cos A = \frac { 1 } { 3 } , \sin B = \frac { \sqrt { 3 } } { 2 }
B) cosA=12,sinB=12\cos A = \frac { 1 } { 2 } , \sin B = \frac { 1 } { 2 }
C) cosA=32,sinB=32\cos A = \frac { \sqrt { 3 } } { 2 } , \sin B = \frac { \sqrt { 3 } } { 2 }
D) cosA=23,sinB=32\cos A = \frac { 2 } { 3 } , \sin B = \frac { \sqrt { 3 } } { 2 }
E) cosA=32,sinB=13\cos A = \frac { \sqrt { 3 } } { 2 } , \sin B = \frac { 1 } { 3 }
سؤال
Use the following information to express the remaining five trigonometric values as functions of tt . Assume that tt is positive. Rationalize any denominators that contain radicals. cosθ=3t4,90<θ<180\cos \theta = - \frac { 3 t } { 4 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

A) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
B) tanθ=3t169t2169t2,secθ=43t,sinθ=169t24,cotθ=169t23t,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
C) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
D) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
E) tanθ=169t23t,secθ=4169t2169t2,sinθ=169t24,cotθ=3t169t2169t2,cscθ=43t.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 } { 3 t } .\end{array}
سؤال
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 900- 900 ^ { \circ }

A) sin(900)=0tan(900)=0csc(900)=1cos(900)=1cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) = - 1 \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(900)=1tan(900)=0csc(900) is unde fined cos(900)=0cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = - 1 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) \text { is unde fined } \\\cos \left( - 900 ^ { \circ } \right) = 0 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
C) sin(900)=1tan(900) is unde fined csc(900)=1cos(900)=0cot(900)=0sec(900) is undefined \begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = - 1 & \tan \left( - 900 ^ { \circ } \right) \text { is unde fined } & \csc \left( - 900 ^ { \circ } \right) = - 1 \\\cos \left( - 900 ^ { \circ } \right) = 0 & \cot \left( - 900 ^ { \circ } \right) = 0 & \sec \left( - 900 ^ { \circ } \right) \text { is undefined }\end{array}
D) sin(900)=0tan(900) is undefined csc(900) is unde fined cos(900)=1cot(900)=0sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) \text { is undefined } & \csc \left( - 900 ^ { \circ } \right) \text { is unde fined } \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) = 0 & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
E) sin(900)=0tan(900)=0csc(900) is undefined cos(900)=1cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
سؤال
Determine whether the equation is correct by evaluating each side. Do not use a calculator. Note: Notation such as sin2θ\sin ^ { 2 } \theta stands for (sinθ)2( \sin \theta ) ^ { 2 } . 1tan260=sec2601 - \tan ^ { 2 } 60 ^ { \circ } = \sec ^ { 2 } 60 ^ { \circ }
سؤال
An observer in a lighthouse is 62ft62 \mathrm { ft } above the surface of the water. The observer sees a ship and finds the angle of depression to be 0.10.1 ^ { \circ } . Estimate the distance of the ship from the base of the lighthouse.

A) 35,54535,545 ft
B) 35,48035,480 ft
C) 35,50535,505 ft
D) 35,57035,570 ft
E) 35,52535,525 ft
سؤال
Determine whether the equation is correct by evaluating each side. Do not use a calculator. tan30=sin601+sin30\tan 30 ^ { \circ } = \frac { \sin 60 ^ { \circ } } { 1 + \sin 30 ^ { \circ } }
سؤال
Evaluate the expression using the concept of a reference angle. cos(675)\cos \left( - 675 ^ { \circ } \right)

A) 22- \frac { \sqrt { 2 } } { 2 }
B) 22\frac { \sqrt { 2 } } { 2 }
C) 26\frac { \sqrt { 2 } } { 6 }
D) 62- \frac { \sqrt { 6 } } { 2 }
E) 66\frac { \sqrt { 6 } } { 6 }
سؤال
Use the following information to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. cosθ=47,90<θ<180\cos \theta = - \frac { 4 } { 7 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

A) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = - \frac { 7 } { 4 }
B) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 } { 4 }
C) sinθ=337,tanθ=334,cscθ=74,cotθ=43333,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
D) sinθ=337,tanθ=43333,cscθ=74,cotθ=334,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
E) sinθ=337,tanθ=43333,cscθ=73333,cotθ=334,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = - \frac { 7 } { 4 }
سؤال
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 900900 ^ { \circ }

A) sin(900)=1tan(900)=0csc(900)=1cos(900)=0cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 1 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(900)=1tan(900)=0csc(900)=1cos(900)=0cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = - 1 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
C) sin(900)=0tan(900)=0csc(900)=0cos(900)=1cot(900)=1sec(900)=1\begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 0 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = 0 \\\cos \left( 900 ^ { \circ } \right) = - 1 & \cot \left( 900 ^ { \circ } \right) = - 1 & \sec \left( 900 ^ { \circ } \right) = - 1\end{array}
D) sin(900)=0tan(900)=0csc(900) is undefined cos(900)=1cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 0 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) \text { is undefined } \\\cos \left( 900 ^ { \circ } \right) = - 1 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) = - 1\end{array}
E) sin(900)=1tan(900) is undefined csc(900)=1cos(900)=0cot(900)=0sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = - 1 & \tan \left( 900 ^ { \circ } \right) \text { is undefined } & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) = 0 & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
سؤال
The accompanying figure shows two ships at points PP and QQ , which are in the same vertical plane as an airplane at point RR . When the height of the airplane is 3,100ft3,100 \mathrm { ft } , the angle of depression to PP is 3535 ^ { \circ } and that to QQ is 3030 ^ { \circ } .Find the distance between the two ships.  <strong>The accompanying figure shows two ships at points  P  and  Q  , which are in the same vertical plane as an airplane at point  R  . When the height of the airplane is  3,100 \mathrm { ft }  , the angle of depression to  P  is  35 ^ { \circ }  and that to  Q  is  30 ^ { \circ }  .Find the distance between the two ships.  </strong> A)  9,800  ft B)  3,960  ft C)  380  ft D)  60,250  ft E)  41,420  ft <div style=padding-top: 35px>

A) 9,8009,800 ft
B) 3,9603,960 ft
C) 380380 ft
D) 60,25060,250 ft
E) 41,42041,420 ft
سؤال
Use the following formation to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. secB=94,180<B<270\sec B = - \frac { 9 } { 4 } , 180 ^ { \circ } < B < 270 ^ { \circ }

A) sinB=49,tanB=46565,cscB=96565,cotB=654,cosB=659\sin B = - \frac { 4 } { 9 } , \tan B = \frac { 4 \sqrt { 65 } } { 65 } , \csc B = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { \sqrt { 65 } } { 4 } , \cos B = - \frac { \sqrt { 65 } } { 9 }
B) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = - \frac { \sqrt { 65 } } { 9 } , \tan B = \frac { \sqrt { 65 } } { 4 } , \csc B = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { 4 \sqrt { 65 } } { 65 } , \cos B = - \frac { 4 } { 9 }
C) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = \frac { \sqrt { 65 } } { 9 } , \tan B = - \frac { \sqrt { 65 } } { 4 } , \csc B = \frac { 9 \sqrt { 65 } } { 65 } , \cot B = - \frac { 4 \sqrt { 65 } } { 65 } , \cos B = \frac { 4 } { 9 }
D) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = \frac { \sqrt { 65 } } { 9 } , \tan B = \frac { \sqrt { 65 } } { 4 } , \csc B = \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { 4 \sqrt { 65 } } { 65 } , \cos B = \frac { 4 } { 9 }
E) sinB=659,tanB=654,cscθ=96565,cotB=46565,cosB=49\sin B = - \frac { \sqrt { 65 } } { 9 } , \tan B = - \frac { \sqrt { 65 } } { 4 } , \csc \theta = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = - \frac { 4 \sqrt { 65 } } { 65 } , \cos B = - \frac { 4 } { 9 }
سؤال
Evaluate the expression using the concept of a reference angle. cot(600)\cot \left( - 600 ^ { \circ } \right)

A) 33- \frac { \sqrt { 3 } } { 3 }
B) 33\frac { \sqrt { 3 } } { 3 }
C) 35- \frac { \sqrt { 3 } } { 5 }
D) 15- \frac { 1 } { 5 }
E) 55\frac { \sqrt { 5 } } { 5 }
سؤال
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 720- 720 ^ { \circ }

A) sin(720)=1tan(720) is undefined csc(720)=1cos(720)=0cot(720)=0sec(720) is undefined \begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 1 & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) = 1 \\\cos \left( - 720 ^ { \circ } \right) = 0 & \cot \left( - 720 ^ { \circ } \right) = 0 & \sec \left( - 720 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(720)=1tan(720) is undefined csc(720)=1cos(720)=0cot(720)=0sec(720) is undefined \begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = - 1 & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) = - 1 \\\cos \left( - 720 ^ { \circ } \right) = 0 & \cot \left( - 720 ^ { \circ } \right) = 0 & \sec \left( - 720 ^ { \circ } \right) \text { is undefined }\end{array}
C) sin(720)=0tan(720)=0csc(720) is undefined cos(720)=1cot(720) is undefined sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 0 & \tan \left( - 720 ^ { \circ } \right) = 0 & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = - 1 & \cot \left( - 720 ^ { \circ } \right) \text { is undefined } & \sec \left( - 720 ^ { \circ } \right) = - 1\end{array}
D) sin(720) is undefined tan(720) is undefined csc(720) is undefined cos(720)=1cot(720)=1sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) \text { is undefined } & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = 1 & \cot \left( - 720 ^ { \circ } \right) = 1 & \sec \left( - 720 ^ { \circ } \right) = 1\end{array}
E) sin(720)=0tan(720)=0csc(720) is undefined cos(720)=1cot(720) is undefined sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 0 & \tan \left( - 720 ^ { \circ } \right) = 0 & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = 1 & \cot \left( - 720 ^ { \circ } \right) \text { is undefined } & \sec \left( - 720 ^ { \circ } \right) = 1\end{array}
سؤال
Determine the answer that establishes an identity. csc2A+sec2A=?\csc ^ { 2 } A + \sec ^ { 2 } A = ?

A) cscAsecA\csc A \sec A
B) cosA1tanAsinAcotA1\frac { \cos A } { 1 - \tan A } - \frac { \sin A } { \cot A - 1 }
C) cosA1+tanAsinAcotA+1\frac { \cos A } { 1 + \tan A } - \frac { \sin A } { \cot A + 1 }
D) csc2Asec2A\csc ^ { 2 } A \sec ^ { 2 } A
E) cosA1tanA+sinAcotA1\frac { \cos A } { 1 - \tan A } + \frac { \sin A } { \cot A - 1 }
سؤال
Determine the answer that establishes an identity. sinθcscθ+cosθsecθ=?\frac { \sin \theta } { \csc \theta } + \frac { \cos \theta } { \sec \theta } = ?

A) csc2θ\csc ^ { 2 } \theta
B) cos2θ\cos ^ { 2 } \theta
C) sec2θ\sec ^ { 2 } \theta
D) 11
E) sin2θ\sin ^ { 2 } \theta
سؤال
Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. cosθ=u10,0<θ<90\cos \theta = \frac { u } { \sqrt { 10 } } , 0 ^ { \circ } < \theta < 90 ^ { \circ }

A) tanθ=1u2u,secθ=10u,sinθ=1010u210,cotθ=u1u21u2,cscθ=1010u21u2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = - \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
B) tanθ=u1u21u2,secθ=1010u21u2,sinθ=1010u210,cotθ=1u2u,cscθ=10u.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
C) tanθ=10u2u,secθ=10u,sinθ=10010u2,10,cotθ=u10u2,10u2,cscθ=10010u210u2.\begin{array} { l } \tan \theta = \frac { \sqrt { 10 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } , } { 10 } , \\\cot \theta = \frac { u \sqrt { 10 - u ^ { 2 } } , } { 10 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } } { 10 - u ^ { 2 } } .\end{array}
D) tanθ=u1u21u2,secθ=10u,sinθ=1010u210,cotθ=1u2u,cscθ=1010u21u2.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
E) tanθ=1u2u,secθ=1010u21u2,sinθ=1010u210,cotθ=u1u21u2,cscθ=10u.\begin{array} { l } \tan \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
سؤال
Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. sinθ=u2,270<θ<360\sin \theta = - u ^ { 2 } , 270 ^ { \circ } < \theta < 360 ^ { \circ }

A) tanθ=u21u41u4,secθ=1u2,cosθ=1u4,cotθ=1u4u2,cscθ=1u41u4.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = - \frac { 1 } { u ^ { 2 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } .\end{array}
B) tanθ=u21u41u4,secθ=1u41u4,cosθ=1+u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 + u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { 1 } { u ^ { 2 } } .\end{array}
C) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { 1 } { u ^ { 2 } } .\end{array}
D) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = - \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = \frac { 1 } { u ^ { 2 } } .\end{array}
E) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l l } \tan \theta = \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , & \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , & \csc \theta = \frac { 1 } { u ^ { 2 } } .\end{array}
سؤال
Determine the answer that establishes an identity. sinB1+cosB+1+cosBsinB=?\frac { \sin B } { 1 + \cos B } + \frac { 1 + \cos B } { \sin B } = ?

A) 11
B) 2cosB2 \cos B
C) 2secB2 \sec B
D) 2sinB2 \sin B
E) 2cscB2 \csc B
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 6: An Introduction to Trigonometry Via Right Triangles
1
From a point on ground level, you measure the angle of elevation to the top of a mountain to be 3737 ^ { \circ } . Then you walk 150 m150 \mathrm {~m} farther away from the mountain and find that the angle of elevation is now 2020 ^ { \circ } . Find the height of the mountain.

A) 5555 m
B) 8484 m
C) 8181 m
D) 113113 m
E) 106106 m
106106 m
2
In ACD\triangle A C D , you are given C=90,A=60\angle C = 90 ^ { \circ } , \angle A = 60 ^ { \circ } and AC=9A C = 9 . If BB is a point on CD\overline { C D } and BAC=45\angle B A C = 45 ^ { \circ } , find BDB D .

A) BD=6B D = 6
B) BD=B D = 3(33)3 ( 3 - \sqrt { 3 } )
C) BD=B D = 636 \sqrt { 3 }
D) BD=3B D = 3
E) BD=B D = 9(31)9 ( \sqrt { 3 } - 1 )
BD=B D = 9(31)9 ( \sqrt { 3 } - 1 )
3
The radius of the circle in the figure is 2 units. Express the length DCD C in terms of α\alpha .  <strong>The radius of the circle in the figure is 2 units. Express the length  D C  in terms of  \alpha  .  </strong> A)  2 \cos \alpha  B)  2 \cot \alpha  C)  2 \sin \alpha  D)  2 \tan \alpha  E)  2 \sec \alpha

A) 2cosα2 \cos \alpha
B) 2cotα2 \cot \alpha
C) 2sinα2 \sin \alpha
D) 2tanα2 \tan \alpha
E) 2secα2 \sec \alpha
2tanα2 \tan \alpha
4
Find the area of the triangle. Use a calculator and round your final answer to two decimal places.  <strong>Find the area of the triangle. Use a calculator and round your final answer to two decimal places.  </strong> A)  2.08 \mathrm {~cm} ^ { 2 }  B)  5.91 \mathrm {~cm} ^ { 2 }  C)  11.82 \mathrm {~cm} ^ { 2 }  D)  1.04 \mathrm {~cm} ^ { 2 }  E)  2.95 \mathrm {~cm} ^ { 2 }

A) 2.08 cm22.08 \mathrm {~cm} ^ { 2 }
B) 5.91 cm25.91 \mathrm {~cm} ^ { 2 }
C) 11.82 cm211.82 \mathrm {~cm} ^ { 2 }
D) 1.04 cm21.04 \mathrm {~cm} ^ { 2 }
E) 2.95 cm22.95 \mathrm {~cm} ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
5
Refer to the figure. If A=60\angle A = 60 ^ { \circ } and AB=40 cmA B = 40 \mathrm {~cm} , find ACA C .  <strong>Refer to the figure. If  \angle A = 60 ^ { \circ }  and  A B = 40 \mathrm {~cm}  , find  A C  .  </strong> A)  A C = 40 \sqrt { 3 }  cm B)  A C = 20  cm C)  A C = 40  cm D)  A C = \sqrt { 3 }  cm E)  A C = 20 \sqrt { 5 }  cm

A) AC=403A C = 40 \sqrt { 3 } cm
B) AC=20A C = 20 cm
C) AC=40A C = 40 cm
D) AC=3A C = \sqrt { 3 } cm
E) AC=205A C = 20 \sqrt { 5 } cm
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
6
Use the definitions to evaluate the six trigonometric functions of θ\theta . In cases in which a radical occurs in a denominator, rationalize the denominator.  <strong>Use the definitions to evaluate the six trigonometric functions of  \theta  . In cases in which a radical occurs in a denominator, rationalize the denominator.  </strong> A)  \sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5   \cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }  B)  \sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2   \cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }  C)  \sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 }   \cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }  D)  \sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 }   \cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }  E)  \sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2   \cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }

A) sinθ=52,tanθ=552,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5 cosθ=5,cotθ=52,secθ=15\cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }
B) sinθ=115,tanθ=2117,cscθ=2\sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2 cosθ=11,cotθ=112,secθ=17\cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }
C) sinθ=455,tanθ=4,cscθ=54\sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 } cosθ=52,cotθ=14,secθ=5\cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }
D) sinθ=55,tanθ=12,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 } cosθ=255,cotθ=2,secθ=52\cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }
E) sinθ=75,tanθ=275,cscθ=2\sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2 cosθ=7,cotθ=72,secθ=12\cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
7
Evaluate the expression using the concept of a reference angle. sin(150)\sin \left( - 150 ^ { \circ } \right)

A) 66\frac { \sqrt { 6 } } { 6 }
B) 62\frac { \sqrt { 6 } } { 2 }
C) 12\frac { 1 } { 2 }
D) 12- \frac { 1 } { 2 }
E) 16- \frac { 1 } { 6 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
8
Suppose that ABC\triangle A B C is a right triangle with C=90\angle C = 90 ^ { \circ } . If AB=3A B = 3 and BC=332B C = \frac { 3 \sqrt { 3 } } { 2 } , find the quantities. cosA,sinB\cos A , \sin B

A) cosA=13,sinB=32\cos A = \frac { 1 } { 3 } , \sin B = \frac { \sqrt { 3 } } { 2 }
B) cosA=12,sinB=12\cos A = \frac { 1 } { 2 } , \sin B = \frac { 1 } { 2 }
C) cosA=32,sinB=32\cos A = \frac { \sqrt { 3 } } { 2 } , \sin B = \frac { \sqrt { 3 } } { 2 }
D) cosA=23,sinB=32\cos A = \frac { 2 } { 3 } , \sin B = \frac { \sqrt { 3 } } { 2 }
E) cosA=32,sinB=13\cos A = \frac { \sqrt { 3 } } { 2 } , \sin B = \frac { 1 } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
9
Use the following information to express the remaining five trigonometric values as functions of tt . Assume that tt is positive. Rationalize any denominators that contain radicals. cosθ=3t4,90<θ<180\cos \theta = - \frac { 3 t } { 4 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

A) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
B) tanθ=3t169t2169t2,secθ=43t,sinθ=169t24,cotθ=169t23t,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
C) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
D) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
E) tanθ=169t23t,secθ=4169t2169t2,sinθ=169t24,cotθ=3t169t2169t2,cscθ=43t.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 } { 3 t } .\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
10
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 900- 900 ^ { \circ }

A) sin(900)=0tan(900)=0csc(900)=1cos(900)=1cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) = - 1 \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(900)=1tan(900)=0csc(900) is unde fined cos(900)=0cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = - 1 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) \text { is unde fined } \\\cos \left( - 900 ^ { \circ } \right) = 0 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
C) sin(900)=1tan(900) is unde fined csc(900)=1cos(900)=0cot(900)=0sec(900) is undefined \begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = - 1 & \tan \left( - 900 ^ { \circ } \right) \text { is unde fined } & \csc \left( - 900 ^ { \circ } \right) = - 1 \\\cos \left( - 900 ^ { \circ } \right) = 0 & \cot \left( - 900 ^ { \circ } \right) = 0 & \sec \left( - 900 ^ { \circ } \right) \text { is undefined }\end{array}
D) sin(900)=0tan(900) is undefined csc(900) is unde fined cos(900)=1cot(900)=0sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) \text { is undefined } & \csc \left( - 900 ^ { \circ } \right) \text { is unde fined } \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) = 0 & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
E) sin(900)=0tan(900)=0csc(900) is undefined cos(900)=1cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
11
Determine whether the equation is correct by evaluating each side. Do not use a calculator. Note: Notation such as sin2θ\sin ^ { 2 } \theta stands for (sinθ)2( \sin \theta ) ^ { 2 } . 1tan260=sec2601 - \tan ^ { 2 } 60 ^ { \circ } = \sec ^ { 2 } 60 ^ { \circ }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
12
An observer in a lighthouse is 62ft62 \mathrm { ft } above the surface of the water. The observer sees a ship and finds the angle of depression to be 0.10.1 ^ { \circ } . Estimate the distance of the ship from the base of the lighthouse.

A) 35,54535,545 ft
B) 35,48035,480 ft
C) 35,50535,505 ft
D) 35,57035,570 ft
E) 35,52535,525 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
13
Determine whether the equation is correct by evaluating each side. Do not use a calculator. tan30=sin601+sin30\tan 30 ^ { \circ } = \frac { \sin 60 ^ { \circ } } { 1 + \sin 30 ^ { \circ } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
14
Evaluate the expression using the concept of a reference angle. cos(675)\cos \left( - 675 ^ { \circ } \right)

A) 22- \frac { \sqrt { 2 } } { 2 }
B) 22\frac { \sqrt { 2 } } { 2 }
C) 26\frac { \sqrt { 2 } } { 6 }
D) 62- \frac { \sqrt { 6 } } { 2 }
E) 66\frac { \sqrt { 6 } } { 6 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
15
Use the following information to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. cosθ=47,90<θ<180\cos \theta = - \frac { 4 } { 7 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

A) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = - \frac { 7 } { 4 }
B) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 } { 4 }
C) sinθ=337,tanθ=334,cscθ=74,cotθ=43333,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
D) sinθ=337,tanθ=43333,cscθ=74,cotθ=334,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
E) sinθ=337,tanθ=43333,cscθ=73333,cotθ=334,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = - \frac { 7 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
16
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 900900 ^ { \circ }

A) sin(900)=1tan(900)=0csc(900)=1cos(900)=0cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 1 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(900)=1tan(900)=0csc(900)=1cos(900)=0cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = - 1 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
C) sin(900)=0tan(900)=0csc(900)=0cos(900)=1cot(900)=1sec(900)=1\begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 0 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = 0 \\\cos \left( 900 ^ { \circ } \right) = - 1 & \cot \left( 900 ^ { \circ } \right) = - 1 & \sec \left( 900 ^ { \circ } \right) = - 1\end{array}
D) sin(900)=0tan(900)=0csc(900) is undefined cos(900)=1cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 0 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) \text { is undefined } \\\cos \left( 900 ^ { \circ } \right) = - 1 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) = - 1\end{array}
E) sin(900)=1tan(900) is undefined csc(900)=1cos(900)=0cot(900)=0sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = - 1 & \tan \left( 900 ^ { \circ } \right) \text { is undefined } & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) = 0 & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
17
The accompanying figure shows two ships at points PP and QQ , which are in the same vertical plane as an airplane at point RR . When the height of the airplane is 3,100ft3,100 \mathrm { ft } , the angle of depression to PP is 3535 ^ { \circ } and that to QQ is 3030 ^ { \circ } .Find the distance between the two ships.  <strong>The accompanying figure shows two ships at points  P  and  Q  , which are in the same vertical plane as an airplane at point  R  . When the height of the airplane is  3,100 \mathrm { ft }  , the angle of depression to  P  is  35 ^ { \circ }  and that to  Q  is  30 ^ { \circ }  .Find the distance between the two ships.  </strong> A)  9,800  ft B)  3,960  ft C)  380  ft D)  60,250  ft E)  41,420  ft

A) 9,8009,800 ft
B) 3,9603,960 ft
C) 380380 ft
D) 60,25060,250 ft
E) 41,42041,420 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
18
Use the following formation to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. secB=94,180<B<270\sec B = - \frac { 9 } { 4 } , 180 ^ { \circ } < B < 270 ^ { \circ }

A) sinB=49,tanB=46565,cscB=96565,cotB=654,cosB=659\sin B = - \frac { 4 } { 9 } , \tan B = \frac { 4 \sqrt { 65 } } { 65 } , \csc B = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { \sqrt { 65 } } { 4 } , \cos B = - \frac { \sqrt { 65 } } { 9 }
B) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = - \frac { \sqrt { 65 } } { 9 } , \tan B = \frac { \sqrt { 65 } } { 4 } , \csc B = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { 4 \sqrt { 65 } } { 65 } , \cos B = - \frac { 4 } { 9 }
C) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = \frac { \sqrt { 65 } } { 9 } , \tan B = - \frac { \sqrt { 65 } } { 4 } , \csc B = \frac { 9 \sqrt { 65 } } { 65 } , \cot B = - \frac { 4 \sqrt { 65 } } { 65 } , \cos B = \frac { 4 } { 9 }
D) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = \frac { \sqrt { 65 } } { 9 } , \tan B = \frac { \sqrt { 65 } } { 4 } , \csc B = \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { 4 \sqrt { 65 } } { 65 } , \cos B = \frac { 4 } { 9 }
E) sinB=659,tanB=654,cscθ=96565,cotB=46565,cosB=49\sin B = - \frac { \sqrt { 65 } } { 9 } , \tan B = - \frac { \sqrt { 65 } } { 4 } , \csc \theta = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = - \frac { 4 \sqrt { 65 } } { 65 } , \cos B = - \frac { 4 } { 9 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
19
Evaluate the expression using the concept of a reference angle. cot(600)\cot \left( - 600 ^ { \circ } \right)

A) 33- \frac { \sqrt { 3 } } { 3 }
B) 33\frac { \sqrt { 3 } } { 3 }
C) 35- \frac { \sqrt { 3 } } { 5 }
D) 15- \frac { 1 } { 5 }
E) 55\frac { \sqrt { 5 } } { 5 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
20
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 720- 720 ^ { \circ }

A) sin(720)=1tan(720) is undefined csc(720)=1cos(720)=0cot(720)=0sec(720) is undefined \begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 1 & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) = 1 \\\cos \left( - 720 ^ { \circ } \right) = 0 & \cot \left( - 720 ^ { \circ } \right) = 0 & \sec \left( - 720 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(720)=1tan(720) is undefined csc(720)=1cos(720)=0cot(720)=0sec(720) is undefined \begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = - 1 & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) = - 1 \\\cos \left( - 720 ^ { \circ } \right) = 0 & \cot \left( - 720 ^ { \circ } \right) = 0 & \sec \left( - 720 ^ { \circ } \right) \text { is undefined }\end{array}
C) sin(720)=0tan(720)=0csc(720) is undefined cos(720)=1cot(720) is undefined sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 0 & \tan \left( - 720 ^ { \circ } \right) = 0 & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = - 1 & \cot \left( - 720 ^ { \circ } \right) \text { is undefined } & \sec \left( - 720 ^ { \circ } \right) = - 1\end{array}
D) sin(720) is undefined tan(720) is undefined csc(720) is undefined cos(720)=1cot(720)=1sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) \text { is undefined } & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = 1 & \cot \left( - 720 ^ { \circ } \right) = 1 & \sec \left( - 720 ^ { \circ } \right) = 1\end{array}
E) sin(720)=0tan(720)=0csc(720) is undefined cos(720)=1cot(720) is undefined sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 0 & \tan \left( - 720 ^ { \circ } \right) = 0 & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = 1 & \cot \left( - 720 ^ { \circ } \right) \text { is undefined } & \sec \left( - 720 ^ { \circ } \right) = 1\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
21
Determine the answer that establishes an identity. csc2A+sec2A=?\csc ^ { 2 } A + \sec ^ { 2 } A = ?

A) cscAsecA\csc A \sec A
B) cosA1tanAsinAcotA1\frac { \cos A } { 1 - \tan A } - \frac { \sin A } { \cot A - 1 }
C) cosA1+tanAsinAcotA+1\frac { \cos A } { 1 + \tan A } - \frac { \sin A } { \cot A + 1 }
D) csc2Asec2A\csc ^ { 2 } A \sec ^ { 2 } A
E) cosA1tanA+sinAcotA1\frac { \cos A } { 1 - \tan A } + \frac { \sin A } { \cot A - 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
22
Determine the answer that establishes an identity. sinθcscθ+cosθsecθ=?\frac { \sin \theta } { \csc \theta } + \frac { \cos \theta } { \sec \theta } = ?

A) csc2θ\csc ^ { 2 } \theta
B) cos2θ\cos ^ { 2 } \theta
C) sec2θ\sec ^ { 2 } \theta
D) 11
E) sin2θ\sin ^ { 2 } \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
23
Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. cosθ=u10,0<θ<90\cos \theta = \frac { u } { \sqrt { 10 } } , 0 ^ { \circ } < \theta < 90 ^ { \circ }

A) tanθ=1u2u,secθ=10u,sinθ=1010u210,cotθ=u1u21u2,cscθ=1010u21u2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = - \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
B) tanθ=u1u21u2,secθ=1010u21u2,sinθ=1010u210,cotθ=1u2u,cscθ=10u.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
C) tanθ=10u2u,secθ=10u,sinθ=10010u2,10,cotθ=u10u2,10u2,cscθ=10010u210u2.\begin{array} { l } \tan \theta = \frac { \sqrt { 10 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } , } { 10 } , \\\cot \theta = \frac { u \sqrt { 10 - u ^ { 2 } } , } { 10 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } } { 10 - u ^ { 2 } } .\end{array}
D) tanθ=u1u21u2,secθ=10u,sinθ=1010u210,cotθ=1u2u,cscθ=1010u21u2.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
E) tanθ=1u2u,secθ=1010u21u2,sinθ=1010u210,cotθ=u1u21u2,cscθ=10u.\begin{array} { l } \tan \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
24
Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. sinθ=u2,270<θ<360\sin \theta = - u ^ { 2 } , 270 ^ { \circ } < \theta < 360 ^ { \circ }

A) tanθ=u21u41u4,secθ=1u2,cosθ=1u4,cotθ=1u4u2,cscθ=1u41u4.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = - \frac { 1 } { u ^ { 2 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } .\end{array}
B) tanθ=u21u41u4,secθ=1u41u4,cosθ=1+u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 + u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { 1 } { u ^ { 2 } } .\end{array}
C) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { 1 } { u ^ { 2 } } .\end{array}
D) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = - \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = \frac { 1 } { u ^ { 2 } } .\end{array}
E) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l l } \tan \theta = \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , & \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , & \csc \theta = \frac { 1 } { u ^ { 2 } } .\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
25
Determine the answer that establishes an identity. sinB1+cosB+1+cosBsinB=?\frac { \sin B } { 1 + \cos B } + \frac { 1 + \cos B } { \sin B } = ?

A) 11
B) 2cosB2 \cos B
C) 2secB2 \sec B
D) 2sinB2 \sin B
E) 2cscB2 \csc B
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.