Deck 13: Introduction to Multiple Regression

ملء الشاشة (f)
exit full mode
سؤال
Instruction 13.3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.3,what is the predicted consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A) $1.39 billion.
B) $2.89 billion.
C) $4.75 billion.
D) $9.45 billion.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Instruction 13.4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
OUTPUT
SUMMARY
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adj. R Square } & 0.726 \\ \text { Std. Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F Regression 3605.7736901.44340.0001 Residual 1214.226426.9828 Total 494820.0000 Coeff  StdError t Stat p value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F} \\ \text { Regression } & & 3605.7736 & 901.4434 & & 0.0001 \\ \text { Residual } & & 1214.2264 & 26.9828 & & \\ \text { Total } & 49 & 4820.0000 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 & \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 & \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 & \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.4,what minimum annual income would an individual with a family size of 9 and 10 years of education need to attain a predicted 5,000 square metre home (House = 50)?

A) $56.75 thousand.
B) $211.85 thousand.
C) $178.33 thousand.
D) $44.14 thousand.
سؤال
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,for these data,what is the estimated coefficient for performance rating,b1?

A) 9.103
B) 0.616
C) 6.932
D) 1.054
سؤال
Instruction 13.4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
OUTPUT
SUMMARY
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adj. R Square } & 0.726 \\ \text { Std. Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F Regression 3605.7736901.44340.0001 Residual 1214.226426.9828 Total 494820.0000 Coeff  StdError t Stat p value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F} \\ \text { Regression } & & 3605.7736 & 901.4434 & & 0.0001 \\ \text { Residual } & & 1214.2264 & 26.9828 & & \\ \text { Total } & 49 & 4820.0000 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 & \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 & \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 & \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.4,what minimum annual income would an individual with a family size of 4 and 16 years of education need to attain a predicted 10,000 square metre home (House = 100)?

A) $178.33 thousand.
B) $211.85 thousand.
C) $44.14 thousand.
D) $56.75 thousand.
سؤال
Instruction 13.1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following:
 Employee YX1X21100107290310380894705456058650757401483011\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y & X 1 & X 2 \\\hline 1 & 100 & 10 & 7 \\\hline 2 & 90 & 3 & 10 \\\hline 3 & 80 & 8 & 9 \\\hline 4 & 70 & 5 & 4 \\\hline 5 & 60 & 5 & 8 \\\hline 6 & 50 & 7 & 5 \\\hline 7 & 40 & 1 & 4 \\\hline 8 & 30 & 1 & 1 \\\hline\end{array}

-Referring to Instruction 13.1,for these data,what is the value for the regression constant,b0?

A) 0.998
B) 21.293
C) 3.103
D) 4.698
سؤال
Instruction 13.1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following:
 Employee YX1X21100107290310380894705456058650757401483011\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y & X 1 & X 2 \\\hline 1 & 100 & 10 & 7 \\\hline 2 & 90 & 3 & 10 \\\hline 3 & 80 & 8 & 9 \\\hline 4 & 70 & 5 & 4 \\\hline 5 & 60 & 5 & 8 \\\hline 6 & 50 & 7 & 5 \\\hline 7 & 40 & 1 & 4 \\\hline 8 & 30 & 1 & 1 \\\hline\end{array}

-Referring to Instruction 13.1,for these data,what is the estimated coefficient for the variable representing years an employee has been with the company,b1?

A) 3.103
B) 4.698
C) 21.293
D) 0.998
سؤال
Instruction 13.1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following:
 Employee YX1X21100107290310380894705456058650757401483011\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y & X 1 & X 2 \\\hline 1 & 100 & 10 & 7 \\\hline 2 & 90 & 3 & 10 \\\hline 3 & 80 & 8 & 9 \\\hline 4 & 70 & 5 & 4 \\\hline 5 & 60 & 5 & 8 \\\hline 6 & 50 & 7 & 5 \\\hline 7 & 40 & 1 & 4 \\\hline 8 & 30 & 1 & 1 \\\hline\end{array}

-Referring to Instruction 13.1,for these data,what is the estimated coefficient for the variable representing scores on the aptitude test,b2?

A) 21.293
B) 0.998
C) 3.103
D) 4.698
سؤال
Multiple regression is the process of using several independent variables to predict a number of dependent variables.
سؤال
A multiple regression is called 'multiple' because it has several data points.
سؤال
Instruction 13.3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.3,what is the estimated average consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A) $1.39 billion.
B) $2.89 billion.
C) $4.75 billion.
D) $9.45 billion.
سؤال
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,suppose an employee had never taken an economics course and managed to score a 5 on his performance rating.What is his estimated expected wage rate?

A) $12.20
B) $25.11
C) $10.90
D) $17.23
سؤال
Instruction 13.3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.3,the p-value for the regression model as a whole is

A) 0.01.
B) 0.001.
C) 0.05.
D) None of the above.
سؤال
The interpretation of the slope is different in a multiple linear regression model as compared to a simple linear regression model.
سؤال
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,for these data,what is the value for the regression constant,b0?

A) 9.103
B) 6.932
C) 1.054
D) 0.616
سؤال
Instruction 13.1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following:
 Employee YX1X21100107290310380894705456058650757401483011\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y & X 1 & X 2 \\\hline 1 & 100 & 10 & 7 \\\hline 2 & 90 & 3 & 10 \\\hline 3 & 80 & 8 & 9 \\\hline 4 & 70 & 5 & 4 \\\hline 5 & 60 & 5 & 8 \\\hline 6 & 50 & 7 & 5 \\\hline 7 & 40 & 1 & 4 \\\hline 8 & 30 & 1 & 1 \\\hline\end{array}

-Referring to Instruction 13.1,if an employee who had been with the company for five years scored a 9 on the aptitude test,what would his estimated expected sales be?

A) 60.88
B) 17.98
C) 55.62
D) 79.09
سؤال
A multiple regression is called 'multiple' because it has several explanatory variables.
سؤال
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,an employee who took 12 economics courses scores 10 on the performance rating.What is her estimated expected wage rate?

A) $25.70
B) $10.90
C) $24.87
D) $12.20
سؤال
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,for these data,what is the estimated coefficient for the number of economics courses taken,b2?

A) 6.932
B) 1.054
C) 9.103
D) 0.616
سؤال
In a multiple regression problem involving two independent variables,if b1 is computed to be +2.0,it means that

A) the estimated mean of Y increases by 2 units for each increase of 1 unit of X1, without regard to X2.
B) the estimated mean of Y increases by 2 units for each increase of 1 unit of X1, holding X2 constant.
C) the estimated mean of Y is 2 when X1 equals zero.
D) the relationship between X1 and Y is significant.
سؤال
Instruction 13.3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.3,what is the estimated average consumption level for an economy with GDP equal to $2 billion and an aggregate price index of 90?

A) $1.39 billion.
B) $2.89 billion.
C) $4.75 billion.
D) $9.45 billion.
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the predicted mean grade for a student carrying 15 course units and who has a total university entrance exam score of 1,100 is ___________.
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the net regression coefficient of X2 is___________.
سؤال
Instruction 13.10
The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries) and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending:
 Regression  Statistics  Multiple R 0.7930 R Square 0.6288 Adj. R Square 0.602 Standard  Error 10.4570 Observations 47\begin{array}{|l|r|}\hline\text { Regression } & \text { Statistics } \\\hline \text { Multiple R } & 0.7930 \\\hline \text { R Square } & 0.6288 \\\hline \text { Adj. R Square } & 0.602 \\\hline \text { Standard } & \\\text { Error } & 10.4570 \\\hline \text { Observations } & 47\\\hline\end{array}

 ANOVA  d  SS  MS  F  Signif F  Regression 37965.082655.0324.28020.0000 Residual 434702.02109.35 Total 4612667.11\begin{array}{|l|r|r|r|r|r|}\hline \text { ANOVA } & & & & \\\hline & \text { d } & \text { SS } & \text { MS } & \text { F } & \text { Signif F } \\\hline \text { Regression } & 3 & 7965.08 & 2655.03 & 24.2802 & 0.0000 \\\hline \text { Residual } & 43 & 4702.02 & 109.35 & & \\\hline \text { Total } & 46 & 12667.11 & & & \\\hline\end{array}


 Coeff  StolFrro  tSta  p-va/ue  Lower 95%  Upper 95%  Intercept 753.4225101.11497.45110.0000957.3401549.5050 % Attendance 8.50141.07717.89290.00006.329210.6735 Salary 0.0000006850.00060.00110.99910.00130.0013 Spending 0.00600.00461.28790.20470.00340.0153\begin{array}{|l|r|r|r|r|r|r|} \hline & \text { Coeff } & \text { StolFrro } & \text { tSta } & \text { p-va/ue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -753.4225 & 101.1149 & -7.4511 & 0.0000 & -957.3401 & -549.5050 \\\hline \text { \% Attendance } & 8.5014 & 1.0771 & 7.8929 & 0.0000 & 6.3292 & 10.6735 \\\hline \text { Salary } & 0.000000685 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\\hline \text { Spending } & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}

-Referring to Instruction 13.10,predict the percentage of students passing the proficiency test for a school which has a daily mean of 95% of students attending class,an average teacher salary of 40,000 dollars and an instructional spending per pupil of 2000 dollars.
سؤال
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the proportion of the total variability in insurance premiums that can be explained by AGE,TICKETS and DENSITY is ______.
سؤال
Instruction 13.8
A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in kilograms). Two variables thought to effect weight-loss are client's length of time on the weight loss program and time of session. These variables are described below:
Y = Weight-loss (in kilograms)
X1 = Length of time in weight-loss program (in months)
X2 = 1 if morning session, 0 if not
X3 = 1 if afternoon session, 0 if not (Base level = evening session)
Data for 12 clients on a weight-loss program at the clinic were collected and used to fit the interaction model:
Y = ?0 + ?1X1 + ?2X2 + ?3X3 + ?4X1X2 + ?5X1X3 + ?
Partial output from Microsoft Excel follows:
 Regression Statistics MultipleR 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12\begin{array}{ll}\text { Regression}\\\text { Statistics}\\ \text { MultipleR } & 0.73514 \\\text { R Square } & 0.540438 \\\text { Adjusted R Square } & 0.157469 \\\text { Standard Error } & 12.4147 \\\text { Observations } & 12\end{array}

 ANOVA F=5.41118 Significance F=0.040201\begin{array}{ll}\text { ANOVA }\\ F=5.41118 & \text { Significance } F= \\& 0.040201\end{array}


 Coeff  StdError  t Stat  p-value  Intercept 0.08974414.1270.00600.9951 Length (X1)6.225382.434732.549560.0479 Morn Ses (X2)2.21727222.14160.1001410.9235 Aft Ses (X3)11.82333.15453.5589010.0165 Length* Morn Ses 0.770583.5620.2163340.8359 Length*Aft Ses 0.541473.359880.1611580.8773\begin{array}{lllll}&\text { Coeff }&\text { StdError }&\text { t Stat }&\text { p-value }\\\text { Intercept } & 0.089744 & 14.127 & 0.0060 & 0.9951 \\\text { Length }\left(X_{1}\right) & 6.22538 & 2.43473 & 2.54956 & 0.0479 \\\text { Morn Ses }\left(X_{2}\right) & 2.217272 & 22.1416 & 0.100141 & 0.9235 \\\text { Aft Ses }\left(X_{3}\right) & 11.8233 & 3.1545 & 3.558901 & 0.0165 \\\text { Length* Morn Ses } & 0.77058 & 3.562 & 0.216334 & 0.8359 \\\text { Length*Aft Ses } & -0.54147 & 3.35988 & -0.161158 & 0.8773\end{array}

-Referring to Instruction 13.8,what is the experimental unit for this analysis?

A) A client on a weight-loss program.
B) A month.
C) A morning, afternoon, or evening session.
D) A clinic.
سؤال
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,to test the significance of the multiple regression model,the value of the test statistic is ___________.
سؤال
Instruction 13.4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
OUTPUT
SUMMARY
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adj. R Square } & 0.726 \\ \text { Std. Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F Regression 3605.7736901.44340.0001 Residual 1214.226426.9828 Total 494820.0000 Coeff  StdError t Stat p value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F} \\ \text { Regression } & & 3605.7736 & 901.4434 & & 0.0001 \\ \text { Residual } & & 1214.2264 & 26.9828 & & \\ \text { Total } & 49 & 4820.0000 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 & \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 & \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 & \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.4,what is the predicted house size (in hundreds of square metres)for an individual earning an annual income of $40,000,having a family size of 4 and going to school a total of 13 years?

A) 15.15
B) 53.87
C) 11.43
D) 24.88
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the estimate of the unit change in the mean of Y per unit change in X1,holding X2 constant,is___________.
سؤال
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the total degrees of freedom that are missing in the ANOVA table should be ___________.
سؤال
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the standard error of the estimate is ___________.
سؤال
Instruction 13.5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression.
OUTPUT
SUMMARY
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adj. R Square 0.662 Std. Error 17501.643 Observations 26\begin{array} { l l } \text { Regression Statistics } & \\ \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adj. R Square } & 0.662 \\ \text { Std. Error } & 17501.643 \\ \text { Observations } & 26 \end{array}

ANOVA
dfSSMSFSignif FRegression215579777040778988852025.4320.0001Residual 237045072780306307512Total 2522624849820\begin{array}{llllll} & d f& SS &{ MS } & F & \text{Signif F} \\\text{Regression} & 2 & 15579777040&7789888520 & 25.432 & 0.0001 \\\text{Residual }& 23 & 7045072780&306307512 & & \\\text{Total }& 25 & 22624849820 & &\end{array}


 Coeff  StdError  t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lllll} & \text { Coeff } & \text { StdError } & \text { t Stat } & p \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.5,what are the predicted sales (in millions of dollars)for a company spending $100 million on capital and $100 million on wages?

A) 20,455.98
B) 17,277.49
C) 16,520.07
D) 15,800.00
سؤال
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the adjusted r2 is____________.
سؤال
Instruction 13.5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression.
OUTPUT
SUMMARY
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adj. R Square 0.662 Std. Error 17501.643 Observations 26\begin{array} { l l } \text { Regression Statistics } & \\ \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adj. R Square } & 0.662 \\ \text { Std. Error } & 17501.643 \\ \text { Observations } & 26 \end{array}

ANOVA
dfSSMSFSignif FRegression215579777040778988852025.4320.0001Residual 237045072780306307512Total 2522624849820\begin{array}{llllll} & d f& SS &{ MS } & F & \text{Signif F} \\\text{Regression} & 2 & 15579777040&7789888520 & 25.432 & 0.0001 \\\text{Residual }& 23 & 7045072780&306307512 & & \\\text{Total }& 25 & 22624849820 & &\end{array}


 Coeff  StdError  t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lllll} & \text { Coeff } & \text { StdError } & \text { t Stat } & p \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.5,what are the predicted sales (in millions of dollars)for a company spending $500 million on capital and $200 million on wages?

A) 17,277.49
B) 15,800.00
C) 16,520.07
D) 20,455.98
سؤال
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the estimated mean change in insurance premiums for every two additional tickets received is ___________.
سؤال
Instruction 13.9
As a project for his business statistics class, a student examined the factors that determined parking meter rates throughout the campus area. Data were collected for the price per hour of parking, number of city blocks to the centre of the university and one of the three jurisdictions: on campus, in the CBD and off campus or outside of the CBD and off campus. The population regression model hypothesised is:
Yi = ? + ?1x1i + ?2x2i + ?3x2i + ?i
Where
Y is the meter price
x1 is the number of blocks to the centre of the university
x2 is a dummy variable that takes the value 1 if the meter is located in the CBD and off campus and the value 0 otherwise
x3 is a dummy variable that takes the value 1 if the meter is located outside of the CBD and off campus, and the value 0 otherwise
The following Excel results are obtained:
 Regression  Statistics  Multiple R 0.9659 R Square 0.9331 Adj. R Square 0.9294 Standard  Error 0.0327 Observations 58\begin{array}{|l|r|}\hline\text { Regression } & \text { Statistics } \\\hline \text { Multiple R } & 0.9659 \\\hline \text { R Square } & 0.9331 \\\hline \text { Adj. R Square } & 0.9294 \\\hline \text { Standard } & \\\text { Error } & 0.0327 \\\hline \text { Observations } & 58\\\hline\end{array}

 ANOVA d SS MSF Signif F Regression 30.80940.2698251.19950.0000 Residual 540.058 d0.0010 Total 570.8675\begin{array}{|c|c|c|c|c|c|}\hline\text { ANOVA }\\\hline & d & \text { SS } & \mathrm{MS} & F & \text { Signif } F \\\hline \text { Regression } & 3 & 0.8094 & 0.2698 & 251.1995 & 0.0000 \\\hline \text { Residual } & 54 & 0.058 \mathrm{~d} & 0.0010 & & \\\hline \text { Total } & 57 & 0.8675 & & & \\\hline\end{array}

 Coef  Stol Error  t Stat p-value  Intercept 0.51180.01337.46752.4904X10.00450.00341.32760.1898X20.23920.012319.39420.0000X30.00020.01230.02140.9829\begin{array}{|l|r|r|r|r|}\hline & \text { Coef } & \text { Stol Error } & \text { t Stat } & p \text {-value } \\\hline \text { Intercept } & 0.5118 & 0.013 & 37.4675 & 2.4904 \\\hline X_{1} & -0.0045 & 0.0034 & -1.3276 & 0.1898 \\\hline X_{2} & -0.2392 & 0.0123 & -19.3942 & 0.0000 \\\hline X_{3} & -0.0002 & 0.0123 & -0.0214 & 0.9829 \\\hline\end{array}

-Referring to Instruction 13.9,predict the meter rate per hour if one parks outside of the CBD and off campus three blocks from the centre of the university.

A) $0.4981
B) $0.2589
C) $0.0139
D) $0.2604
سؤال
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,to test the significance of the multiple regression model,the p-value of the test statistic in the sample is___________.
سؤال
Instruction 13.10
The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries) and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending:
 Regression  Statistics  Multiple R 0.7930 R Square 0.6288 Adj. R Square 0.602 Standard  Error 10.4570 Observations 47\begin{array}{|l|r|}\hline\text { Regression } & \text { Statistics } \\\hline \text { Multiple R } & 0.7930 \\\hline \text { R Square } & 0.6288 \\\hline \text { Adj. R Square } & 0.602 \\\hline \text { Standard } & \\\text { Error } & 10.4570 \\\hline \text { Observations } & 47\\\hline\end{array}

 ANOVA  d  SS  MS  F  Signif F  Regression 37965.082655.0324.28020.0000 Residual 434702.02109.35 Total 4612667.11\begin{array}{|l|r|r|r|r|r|}\hline \text { ANOVA } & & & & \\\hline & \text { d } & \text { SS } & \text { MS } & \text { F } & \text { Signif F } \\\hline \text { Regression } & 3 & 7965.08 & 2655.03 & 24.2802 & 0.0000 \\\hline \text { Residual } & 43 & 4702.02 & 109.35 & & \\\hline \text { Total } & 46 & 12667.11 & & & \\\hline\end{array}


 Coeff  StolFrro  tSta  p-va/ue  Lower 95%  Upper 95%  Intercept 753.4225101.11497.45110.0000957.3401549.5050 % Attendance 8.50141.07717.89290.00006.329210.6735 Salary 0.0000006850.00060.00110.99910.00130.0013 Spending 0.00600.00461.28790.20470.00340.0153\begin{array}{|l|r|r|r|r|r|r|} \hline & \text { Coeff } & \text { StolFrro } & \text { tSta } & \text { p-va/ue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -753.4225 & 101.1149 & -7.4511 & 0.0000 & -957.3401 & -549.5050 \\\hline \text { \% Attendance } & 8.5014 & 1.0771 & 7.8929 & 0.0000 & 6.3292 & 10.6735 \\\hline \text { Salary } & 0.000000685 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\\hline \text { Spending } & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}

-Referring to Instruction 13.10,estimate the mean percentage of students passing the proficiency test for all the schools that have a daily mean of 95% of students attending class,a mean teacher salary of 40,000 dollars and an instructional spending per pupil of 2,000 dollars.
سؤال
Instruction 13.6
One of the most common questions of prospective house buyers pertains to the average cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following four variables to predict heating costs: the daily minimum outside temperature in degrees of Celsius (X1), the amount of insulation in cm (X2), the number of windows in the house (X3) and the age of the furnace in years (X4). Given below are the Microsoft Excel outputs of two regression models.
<strong>Instruction 13.6 One of the most common questions of prospective house buyers pertains to the average cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following four variables to predict heating costs: the daily minimum outside temperature in degrees of Celsius (X<sub>1</sub>), the amount of insulation in cm (X<sub>2</sub>), the number of windows in the house (X<sub>3</sub>) and the age of the furnace in years (X<sub>4</sub>). Given below are the Microsoft Excel outputs of two regression models.     Referring to Instruction 13.6,the estimated value of the partial regression parameter β<sub>1</sub> in Model 1 means that</strong> A) holding the effect of the other independent variables constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature by 4.51 degrees. B) holding the effect of the other independent variables constant, a 1% increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by 4.51%. C) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $4.51. D) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by $4.51. <div style=padding-top: 35px> <strong>Instruction 13.6 One of the most common questions of prospective house buyers pertains to the average cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following four variables to predict heating costs: the daily minimum outside temperature in degrees of Celsius (X<sub>1</sub>), the amount of insulation in cm (X<sub>2</sub>), the number of windows in the house (X<sub>3</sub>) and the age of the furnace in years (X<sub>4</sub>). Given below are the Microsoft Excel outputs of two regression models.     Referring to Instruction 13.6,the estimated value of the partial regression parameter β<sub>1</sub> in Model 1 means that</strong> A) holding the effect of the other independent variables constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature by 4.51 degrees. B) holding the effect of the other independent variables constant, a 1% increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by 4.51%. C) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $4.51. D) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by $4.51. <div style=padding-top: 35px>
Referring to Instruction 13.6,the estimated value of the partial regression parameter β1 in Model 1 means that

A) holding the effect of the other independent variables constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature by 4.51 degrees.
B) holding the effect of the other independent variables constant, a 1% increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by 4.51%.
C) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $4.51.
D) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by $4.51.
سؤال
Instruction 13.10
The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries) and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending:
 Regression  Statistics  Multiple R 0.7930 R Square 0.6288 Adj. R Square 0.602 Standard  Error 10.4570 Observations 47\begin{array}{|l|r|}\hline\text { Regression } & \text { Statistics } \\\hline \text { Multiple R } & 0.7930 \\\hline \text { R Square } & 0.6288 \\\hline \text { Adj. R Square } & 0.602 \\\hline \text { Standard } & \\\text { Error } & 10.4570 \\\hline \text { Observations } & 47\\\hline\end{array}

 ANOVA  d  SS  MS  F  Signif F  Regression 37965.082655.0324.28020.0000 Residual 434702.02109.35 Total 4612667.11\begin{array}{|l|r|r|r|r|r|}\hline \text { ANOVA } & & & & \\\hline & \text { d } & \text { SS } & \text { MS } & \text { F } & \text { Signif F } \\\hline \text { Regression } & 3 & 7965.08 & 2655.03 & 24.2802 & 0.0000 \\\hline \text { Residual } & 43 & 4702.02 & 109.35 & & \\\hline \text { Total } & 46 & 12667.11 & & & \\\hline\end{array}


 Coeff  StolFrro  tSta  p-va/ue  Lower 95%  Upper 95%  Intercept 753.4225101.11497.45110.0000957.3401549.5050 % Attendance 8.50141.07717.89290.00006.329210.6735 Salary 0.0000006850.00060.00110.99910.00130.0013 Spending 0.00600.00461.28790.20470.00340.0153\begin{array}{|l|r|r|r|r|r|r|} \hline & \text { Coeff } & \text { StolFrro } & \text { tSta } & \text { p-va/ue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -753.4225 & 101.1149 & -7.4511 & 0.0000 & -957.3401 & -549.5050 \\\hline \text { \% Attendance } & 8.5014 & 1.0771 & 7.8929 & 0.0000 & 6.3292 & 10.6735 \\\hline \text { Salary } & 0.000000685 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\\hline \text { Spending } & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}

-Referring to Instruction 13.10,which of the following is a correct statement?

A) The daily mean of the percentage of students attending class is expected to go up by an estimated 8.50% when the percentage of students passing the proficiency test increases by 1% holding constant the effects of all the remaining independent variables.
B) The mean percentage of students passing the proficiency test is estimated to go up by 8.50% when daily mean of percentage of students attending class increases by 1%.
C) The daily mean of the percentage of students attending class is expected to go up by an estimated 8.50% when the percentage of students passing the proficiency test increases by 1%.
D) The mean percentage of students passing the proficiency test is estimated to go up by 8.50% when daily mean of the percentage of students attending class increases by 1% holding constant the effects of all the remaining independent variables.
سؤال
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the regression sum of squares that is missing in the ANOVA table should be ___________.
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the value of the adjusted coefficient of multiple determination,r2adj,is ___________.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the estimate of the unit change in the mean of Y per unit change in X4,taking into account the effects of the other three variables,is ___________.
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The appropriate alternative hypothesis is ___________.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the critical value of an F test on the entire regression for a level of significance of 0.01 is ___________.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the p-value of the F test for the significance of the entire regression is ___________.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the net regression coefficient of X2 is ___________.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the value of the adjusted coefficient of multiple determination,adjusted r2,is ___________.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the value of the coefficient of multiple determination,r2Y.1234,is ___________.
سؤال
Instruction 13.14
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1.
Model 1
Regression Statistics
 Multiple R 0.7035 R Square 0.4949 Adj. R Square 0.4030 Std. Error 18.4861 Observations 40\begin{array} { l l } \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adj. R Square } & 0.4030 \\ \text { Std. Error } & 18.4861 \\ \text { Observations } & 40 \end{array}

ANOVA
df SS  MS F Signiff  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 39223325.9 Coeff  StdError  tStat p value  Lower 95%  Upper95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array} { l l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } & \\ \text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 & \\ \text { Residual } & 33 & 11277.2586 & 341.7351 & & & \\ \text { Total } & 39 & 223325.9 & & & & \\ & & & & & & \\ & \text { Coeff } & \text { StdError } & \text { tStat } & p \text { value } & \text { Lower 95\% } & \text { Upper95\% } \\ \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below:
Mode 2
Regression Statistics
 Multiple R 0.6391 R Square 0.4085 Adj. R Square 0.3765 Std. Error 18.8929 Observations 40\begin{array} { l l } \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adj. R Square } & 0.3765 \\ \text { Std. Error } & 18.8929 \\ \text { Observations } & 40 \end{array}
ANOVA
df SS  MS F Signiff  Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coeff  StdError t Stat p value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\ \text { Residual } & 37 & 13206.8103 & 356.9408 & & \\ \text { Total } & 39 & 22325.9 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 & \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 & \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 & \end{array}

-Referring to Instruction 13.14 Model 1,predict the number of weeks being unemployed due to a layoff for a worker who is a 30-year-old,has 10 years of education,has 15 years of experience at the previous job,is married,is the head of household and is a manager.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the predicted salary for a 35-year-old person with 10 years of experience,3 degrees and 1 previous job is ___________.
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The critical value of the F test for a level of significance of 0.05 is ___________
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The p-value of the test is ___________.
سؤال
Instruction 13.14
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1.
Model 1
Regression Statistics
 Multiple R 0.7035 R Square 0.4949 Adj. R Square 0.4030 Std. Error 18.4861 Observations 40\begin{array} { l l } \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adj. R Square } & 0.4030 \\ \text { Std. Error } & 18.4861 \\ \text { Observations } & 40 \end{array}

ANOVA
df SS  MS F Signiff  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 39223325.9 Coeff  StdError  tStat p value  Lower 95%  Upper95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array} { l l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } & \\ \text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 & \\ \text { Residual } & 33 & 11277.2586 & 341.7351 & & & \\ \text { Total } & 39 & 223325.9 & & & & \\ & & & & & & \\ & \text { Coeff } & \text { StdError } & \text { tStat } & p \text { value } & \text { Lower 95\% } & \text { Upper95\% } \\ \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below:
Mode 2
Regression Statistics
 Multiple R 0.6391 R Square 0.4085 Adj. R Square 0.3765 Std. Error 18.8929 Observations 40\begin{array} { l l } \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adj. R Square } & 0.3765 \\ \text { Std. Error } & 18.8929 \\ \text { Observations } & 40 \end{array}
ANOVA
df SS  MS F Signiff  Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coeff  StdError t Stat p value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\ \text { Residual } & 37 & 13206.8103 & 356.9408 & & \\ \text { Total } & 39 & 22325.9 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 & \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 & \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 & \end{array}

-Referring to Instruction 13.14 Model 1,estimate the mean number of weeks being unemployed due to a layoff for a worker who is a 30-year-old,has 10 years of education,has 15 years of experience at the previous job,is married,is the head of household and is a manager.
سؤال
When an additional explanatory variable is introduced into a multiple regression model,the coefficient of multiple determination will never decrease.
سؤال
Instruction 13.14
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1.
Model 1
Regression Statistics
 Multiple R 0.7035 R Square 0.4949 Adj. R Square 0.4030 Std. Error 18.4861 Observations 40\begin{array} { l l } \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adj. R Square } & 0.4030 \\ \text { Std. Error } & 18.4861 \\ \text { Observations } & 40 \end{array}

ANOVA
df SS  MS F Signiff  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 39223325.9 Coeff  StdError  tStat p value  Lower 95%  Upper95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array} { l l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } & \\ \text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 & \\ \text { Residual } & 33 & 11277.2586 & 341.7351 & & & \\ \text { Total } & 39 & 223325.9 & & & & \\ & & & & & & \\ & \text { Coeff } & \text { StdError } & \text { tStat } & p \text { value } & \text { Lower 95\% } & \text { Upper95\% } \\ \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below:
Mode 2
Regression Statistics
 Multiple R 0.6391 R Square 0.4085 Adj. R Square 0.3765 Std. Error 18.8929 Observations 40\begin{array} { l l } \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adj. R Square } & 0.3765 \\ \text { Std. Error } & 18.8929 \\ \text { Observations } & 40 \end{array}
ANOVA
df SS  MS F Signiff  Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coeff  StdError t Stat p value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\ \text { Residual } & 37 & 13206.8103 & 356.9408 & & \\ \text { Total } & 39 & 22325.9 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 & \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 & \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 & \end{array}

-Referring to Instruction 13.14 Model 1,which of the following is a correct statement?

A) On average, a worker who is a year older is estimated to stay jobless shorter by approximately 1.35 weeks, while holding constant the effects of all the remaining independent variables.
B) On average, a worker who is a year older is estimated to stay jobless longer by approximately 0.62 weeks, while holding constant the effects of all the remaining independent variables.
C) On average, a worker who is a year older is estimated to stay jobless longer by approximately 1.29 weeks, while holding constant the effects of all the remaining independent variables.
D) On average, a worker who is a year older is estimated to stay jobless longer by approximately 32.66 weeks, while holding constant the effects of all the remaining independent variables.
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The value of the F test statistic is ___________.
سؤال
The coefficient of multiple determination r2 measures the proportion of variation in Y that is explained by X1 and X2.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the value of the F statistic for testing the significance of the entire regression is ___________.
سؤال
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the analyst wants to use an F test to test H0: β\beta 1 = β\beta 2 = β\beta 3 = β\beta 4 = 0.The appropriate alternative hypothesis is ___________
سؤال
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the value of the coefficient of multiple determination,r2Y.12,is ___________.
سؤال
In calculating the standard error of the estimate,SYX = MSE\sqrt { \mathrm { MSE } } there are n * k * 1 degrees of freedom,where n is the sample size and k represents the number of independent variables in the model.
سؤال
In a multiple regression model,which of the following is correct regarding the value of the adjusted r2?

A) It has to be larger than the coefficient of multiple determination.
B) It can be larger than 1.
C) It can be negative.
D) It has to be positive.
سؤال
The variation attribuInstruction to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by

A) regression mean squares.
B) total sum of squares.
C) regression sum of squares.
D) error sum of squares.
سؤال
From the coefficient of multiple determination,you cannot detect the strength of the relationship between Y and any individual independent variable.
سؤال
Instruction 13.15
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}

ANOVA
df SS  MS F Signiff  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.15,when the economist used a simple linear regression model with consumption as the dependent variable and GDP as the independent variable,he obtained an r2 value of 0.971.What additional percentage of the total variation of consumption has been explained by including aggregate prices in the multiple regression?

A) 98.2
B) 1.1
C) 11.1
D) 2.8
سؤال
Instruction 13.15
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}

ANOVA
df SS  MS F Signiff  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.15,the p-value for GDP is

A) 0.01.
B) 0.05.
C) 0.001.
D) None of the above.
سؤال
The total sum of squares (SST)in a regression model will never exceed the regression sum of squares (SSR).
سؤال
Instruction 13.16
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
OUTPUT
SUMMARY
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adj. R Square } & 0.726 \\ \text { Std. Error } & 5.195 \\ \text { Observations } & 50 \end{array}

ANOVA
df SS  MS F Signiff  Regression 3605.7736901.44340.0001 Residual 1214.226426.9828 Total 494820.0000 Coeff  StdError t Stat p value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & & 3605.7736 & 901.4434 & & 0.0001 \\ \text { Residual } & & 1214.2264 & 26.9828 & & \\ \text { Total } & 49 & 4820.0000 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 & \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 & \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 & \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.16,what fraction of the variability in house size is explained by income,size of family and education?

A) 74.8%
B) 33.4%
C) 27.0%
D) 86.5%
سؤال
A regression had the following results: SST = 102.55,SSE = 82.04.It can be said that 90.0% of the variation in the dependent variable is explained by the independent variables in the regression.
سؤال
When an explanatory variable is dropped from a multiple regression model,the coefficient of multiple determination can increase.
سؤال
A regression had the following results: SST = 102.55,SSE = 82.04.It can be said that 20.0% of the variation in the dependent variable is explained by the independent variables in the regression.
سؤال
The coefficient of multiple determination is calculated by taking the ratio of the regression sum of squares over the total sum of squares (SSR/SST)and subtracting that value from 1.
سؤال
A regression had the following results: SST = 82.55,SSE = 29.85.It can be said that 63.84% of the variation in the dependent variable is explained by the independent variables in the regression.
سؤال
You have just computed a regression in which the value of coefficient of multiple determination is 0.57.To determine if this indicates that the independent variables explain a significant portion of the variation in the dependent variable,you would perform an F test.
سؤال
When an additional explanatory variable is introduced into a multiple regression model,the adjusted r2 can never decrease.
سؤال
The coefficient of multiple determination measures the proportion of the total variation in the dependent variable that is explained by a set of independent variables.
سؤال
The coefficient of multiple determination r2Y.12

A) measures the proportion of variation in Y that is explained by X1 and X2.
B) measures the proportion of variation in Y that is explained by X1 holding X2 constant.
C) will have the same sign as b1.
D) measures the variation around the predicted regression equation.
سؤال
When an explanatory variable is dropped from a multiple regression model,the adjusted r2 can increase.
سؤال
Instruction 13.15
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}

ANOVA
df SS  MS F Signiff  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.15,the p-value for the aggregated price index is

A) 0.001.
B) 0.05.
C) 0.01.
D) None of the above.
سؤال
In a multiple regression model,the value of the coefficient of multiple determination

A) can fall between any pair of real numbers.
B) has to fall between -1 and +1.
C) has to fall between -1 and 0.
D) has to fall between 0 and +1.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/269
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 13: Introduction to Multiple Regression
1
Instruction 13.3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.3,what is the predicted consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A) $1.39 billion.
B) $2.89 billion.
C) $4.75 billion.
D) $9.45 billion.
$2.89 billion.
2
Instruction 13.4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
OUTPUT
SUMMARY
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adj. R Square } & 0.726 \\ \text { Std. Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F Regression 3605.7736901.44340.0001 Residual 1214.226426.9828 Total 494820.0000 Coeff  StdError t Stat p value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F} \\ \text { Regression } & & 3605.7736 & 901.4434 & & 0.0001 \\ \text { Residual } & & 1214.2264 & 26.9828 & & \\ \text { Total } & 49 & 4820.0000 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 & \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 & \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 & \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.4,what minimum annual income would an individual with a family size of 9 and 10 years of education need to attain a predicted 5,000 square metre home (House = 50)?

A) $56.75 thousand.
B) $211.85 thousand.
C) $178.33 thousand.
D) $44.14 thousand.
$44.14 thousand.
3
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,for these data,what is the estimated coefficient for performance rating,b1?

A) 9.103
B) 0.616
C) 6.932
D) 1.054
1.054
4
Instruction 13.4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
OUTPUT
SUMMARY
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adj. R Square } & 0.726 \\ \text { Std. Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F Regression 3605.7736901.44340.0001 Residual 1214.226426.9828 Total 494820.0000 Coeff  StdError t Stat p value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F} \\ \text { Regression } & & 3605.7736 & 901.4434 & & 0.0001 \\ \text { Residual } & & 1214.2264 & 26.9828 & & \\ \text { Total } & 49 & 4820.0000 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 & \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 & \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 & \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.4,what minimum annual income would an individual with a family size of 4 and 16 years of education need to attain a predicted 10,000 square metre home (House = 100)?

A) $178.33 thousand.
B) $211.85 thousand.
C) $44.14 thousand.
D) $56.75 thousand.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
5
Instruction 13.1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following:
 Employee YX1X21100107290310380894705456058650757401483011\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y & X 1 & X 2 \\\hline 1 & 100 & 10 & 7 \\\hline 2 & 90 & 3 & 10 \\\hline 3 & 80 & 8 & 9 \\\hline 4 & 70 & 5 & 4 \\\hline 5 & 60 & 5 & 8 \\\hline 6 & 50 & 7 & 5 \\\hline 7 & 40 & 1 & 4 \\\hline 8 & 30 & 1 & 1 \\\hline\end{array}

-Referring to Instruction 13.1,for these data,what is the value for the regression constant,b0?

A) 0.998
B) 21.293
C) 3.103
D) 4.698
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
6
Instruction 13.1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following:
 Employee YX1X21100107290310380894705456058650757401483011\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y & X 1 & X 2 \\\hline 1 & 100 & 10 & 7 \\\hline 2 & 90 & 3 & 10 \\\hline 3 & 80 & 8 & 9 \\\hline 4 & 70 & 5 & 4 \\\hline 5 & 60 & 5 & 8 \\\hline 6 & 50 & 7 & 5 \\\hline 7 & 40 & 1 & 4 \\\hline 8 & 30 & 1 & 1 \\\hline\end{array}

-Referring to Instruction 13.1,for these data,what is the estimated coefficient for the variable representing years an employee has been with the company,b1?

A) 3.103
B) 4.698
C) 21.293
D) 0.998
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
7
Instruction 13.1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following:
 Employee YX1X21100107290310380894705456058650757401483011\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y & X 1 & X 2 \\\hline 1 & 100 & 10 & 7 \\\hline 2 & 90 & 3 & 10 \\\hline 3 & 80 & 8 & 9 \\\hline 4 & 70 & 5 & 4 \\\hline 5 & 60 & 5 & 8 \\\hline 6 & 50 & 7 & 5 \\\hline 7 & 40 & 1 & 4 \\\hline 8 & 30 & 1 & 1 \\\hline\end{array}

-Referring to Instruction 13.1,for these data,what is the estimated coefficient for the variable representing scores on the aptitude test,b2?

A) 21.293
B) 0.998
C) 3.103
D) 4.698
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
8
Multiple regression is the process of using several independent variables to predict a number of dependent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
9
A multiple regression is called 'multiple' because it has several data points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
10
Instruction 13.3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.3,what is the estimated average consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A) $1.39 billion.
B) $2.89 billion.
C) $4.75 billion.
D) $9.45 billion.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
11
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,suppose an employee had never taken an economics course and managed to score a 5 on his performance rating.What is his estimated expected wage rate?

A) $12.20
B) $25.11
C) $10.90
D) $17.23
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
12
Instruction 13.3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.3,the p-value for the regression model as a whole is

A) 0.01.
B) 0.001.
C) 0.05.
D) None of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
13
The interpretation of the slope is different in a multiple linear regression model as compared to a simple linear regression model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
14
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,for these data,what is the value for the regression constant,b0?

A) 9.103
B) 6.932
C) 1.054
D) 0.616
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
15
Instruction 13.1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following:
 Employee YX1X21100107290310380894705456058650757401483011\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y & X 1 & X 2 \\\hline 1 & 100 & 10 & 7 \\\hline 2 & 90 & 3 & 10 \\\hline 3 & 80 & 8 & 9 \\\hline 4 & 70 & 5 & 4 \\\hline 5 & 60 & 5 & 8 \\\hline 6 & 50 & 7 & 5 \\\hline 7 & 40 & 1 & 4 \\\hline 8 & 30 & 1 & 1 \\\hline\end{array}

-Referring to Instruction 13.1,if an employee who had been with the company for five years scored a 9 on the aptitude test,what would his estimated expected sales be?

A) 60.88
B) 17.98
C) 55.62
D) 79.09
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
16
A multiple regression is called 'multiple' because it has several explanatory variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
17
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,an employee who took 12 economics courses scores 10 on the performance rating.What is her estimated expected wage rate?

A) $25.70
B) $10.90
C) $24.87
D) $12.20
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
18
Instruction 13.2
A lecturer in industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed at university (X2). The lecturer randomly selects six workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array} { | l | l | l | l | } \hline \text { Employee } & Y ( \$ ) & X 1 & X 2 \\\hline 1 & 10 & 3 & 0 \\\hline 2 & 12 & 1 & 5 \\\hline 3 & 15 & 8 & 1 \\\hline 4 & 17 & 5 & 8 \\\hline 5 & 20 & 7 & 12 \\\hline 6 & 25 & 10 & 9 \\\hline\end{array}

-Referring to Instruction 13.2,for these data,what is the estimated coefficient for the number of economics courses taken,b2?

A) 6.932
B) 1.054
C) 9.103
D) 0.616
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
19
In a multiple regression problem involving two independent variables,if b1 is computed to be +2.0,it means that

A) the estimated mean of Y increases by 2 units for each increase of 1 unit of X1, without regard to X2.
B) the estimated mean of Y increases by 2 units for each increase of 1 unit of X1, holding X2 constant.
C) the estimated mean of Y is 2 when X1 equals zero.
D) the relationship between X1 and Y is significant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
20
Instruction 13.3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.3,what is the estimated average consumption level for an economy with GDP equal to $2 billion and an aggregate price index of 90?

A) $1.39 billion.
B) $2.89 billion.
C) $4.75 billion.
D) $9.45 billion.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
21
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the predicted mean grade for a student carrying 15 course units and who has a total university entrance exam score of 1,100 is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
22
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the net regression coefficient of X2 is___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
23
Instruction 13.10
The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries) and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending:
 Regression  Statistics  Multiple R 0.7930 R Square 0.6288 Adj. R Square 0.602 Standard  Error 10.4570 Observations 47\begin{array}{|l|r|}\hline\text { Regression } & \text { Statistics } \\\hline \text { Multiple R } & 0.7930 \\\hline \text { R Square } & 0.6288 \\\hline \text { Adj. R Square } & 0.602 \\\hline \text { Standard } & \\\text { Error } & 10.4570 \\\hline \text { Observations } & 47\\\hline\end{array}

 ANOVA  d  SS  MS  F  Signif F  Regression 37965.082655.0324.28020.0000 Residual 434702.02109.35 Total 4612667.11\begin{array}{|l|r|r|r|r|r|}\hline \text { ANOVA } & & & & \\\hline & \text { d } & \text { SS } & \text { MS } & \text { F } & \text { Signif F } \\\hline \text { Regression } & 3 & 7965.08 & 2655.03 & 24.2802 & 0.0000 \\\hline \text { Residual } & 43 & 4702.02 & 109.35 & & \\\hline \text { Total } & 46 & 12667.11 & & & \\\hline\end{array}


 Coeff  StolFrro  tSta  p-va/ue  Lower 95%  Upper 95%  Intercept 753.4225101.11497.45110.0000957.3401549.5050 % Attendance 8.50141.07717.89290.00006.329210.6735 Salary 0.0000006850.00060.00110.99910.00130.0013 Spending 0.00600.00461.28790.20470.00340.0153\begin{array}{|l|r|r|r|r|r|r|} \hline & \text { Coeff } & \text { StolFrro } & \text { tSta } & \text { p-va/ue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -753.4225 & 101.1149 & -7.4511 & 0.0000 & -957.3401 & -549.5050 \\\hline \text { \% Attendance } & 8.5014 & 1.0771 & 7.8929 & 0.0000 & 6.3292 & 10.6735 \\\hline \text { Salary } & 0.000000685 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\\hline \text { Spending } & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}

-Referring to Instruction 13.10,predict the percentage of students passing the proficiency test for a school which has a daily mean of 95% of students attending class,an average teacher salary of 40,000 dollars and an instructional spending per pupil of 2000 dollars.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
24
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the proportion of the total variability in insurance premiums that can be explained by AGE,TICKETS and DENSITY is ______.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
25
Instruction 13.8
A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in kilograms). Two variables thought to effect weight-loss are client's length of time on the weight loss program and time of session. These variables are described below:
Y = Weight-loss (in kilograms)
X1 = Length of time in weight-loss program (in months)
X2 = 1 if morning session, 0 if not
X3 = 1 if afternoon session, 0 if not (Base level = evening session)
Data for 12 clients on a weight-loss program at the clinic were collected and used to fit the interaction model:
Y = ?0 + ?1X1 + ?2X2 + ?3X3 + ?4X1X2 + ?5X1X3 + ?
Partial output from Microsoft Excel follows:
 Regression Statistics MultipleR 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12\begin{array}{ll}\text { Regression}\\\text { Statistics}\\ \text { MultipleR } & 0.73514 \\\text { R Square } & 0.540438 \\\text { Adjusted R Square } & 0.157469 \\\text { Standard Error } & 12.4147 \\\text { Observations } & 12\end{array}

 ANOVA F=5.41118 Significance F=0.040201\begin{array}{ll}\text { ANOVA }\\ F=5.41118 & \text { Significance } F= \\& 0.040201\end{array}


 Coeff  StdError  t Stat  p-value  Intercept 0.08974414.1270.00600.9951 Length (X1)6.225382.434732.549560.0479 Morn Ses (X2)2.21727222.14160.1001410.9235 Aft Ses (X3)11.82333.15453.5589010.0165 Length* Morn Ses 0.770583.5620.2163340.8359 Length*Aft Ses 0.541473.359880.1611580.8773\begin{array}{lllll}&\text { Coeff }&\text { StdError }&\text { t Stat }&\text { p-value }\\\text { Intercept } & 0.089744 & 14.127 & 0.0060 & 0.9951 \\\text { Length }\left(X_{1}\right) & 6.22538 & 2.43473 & 2.54956 & 0.0479 \\\text { Morn Ses }\left(X_{2}\right) & 2.217272 & 22.1416 & 0.100141 & 0.9235 \\\text { Aft Ses }\left(X_{3}\right) & 11.8233 & 3.1545 & 3.558901 & 0.0165 \\\text { Length* Morn Ses } & 0.77058 & 3.562 & 0.216334 & 0.8359 \\\text { Length*Aft Ses } & -0.54147 & 3.35988 & -0.161158 & 0.8773\end{array}

-Referring to Instruction 13.8,what is the experimental unit for this analysis?

A) A client on a weight-loss program.
B) A month.
C) A morning, afternoon, or evening session.
D) A clinic.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
26
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,to test the significance of the multiple regression model,the value of the test statistic is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
27
Instruction 13.4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
OUTPUT
SUMMARY
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adj. R Square } & 0.726 \\ \text { Std. Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F Regression 3605.7736901.44340.0001 Residual 1214.226426.9828 Total 494820.0000 Coeff  StdError t Stat p value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signif F} \\ \text { Regression } & & 3605.7736 & 901.4434 & & 0.0001 \\ \text { Residual } & & 1214.2264 & 26.9828 & & \\ \text { Total } & 49 & 4820.0000 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 & \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 & \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 & \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.4,what is the predicted house size (in hundreds of square metres)for an individual earning an annual income of $40,000,having a family size of 4 and going to school a total of 13 years?

A) 15.15
B) 53.87
C) 11.43
D) 24.88
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
28
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the estimate of the unit change in the mean of Y per unit change in X1,holding X2 constant,is___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
29
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the total degrees of freedom that are missing in the ANOVA table should be ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
30
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the standard error of the estimate is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
31
Instruction 13.5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression.
OUTPUT
SUMMARY
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adj. R Square 0.662 Std. Error 17501.643 Observations 26\begin{array} { l l } \text { Regression Statistics } & \\ \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adj. R Square } & 0.662 \\ \text { Std. Error } & 17501.643 \\ \text { Observations } & 26 \end{array}

ANOVA
dfSSMSFSignif FRegression215579777040778988852025.4320.0001Residual 237045072780306307512Total 2522624849820\begin{array}{llllll} & d f& SS &{ MS } & F & \text{Signif F} \\\text{Regression} & 2 & 15579777040&7789888520 & 25.432 & 0.0001 \\\text{Residual }& 23 & 7045072780&306307512 & & \\\text{Total }& 25 & 22624849820 & &\end{array}


 Coeff  StdError  t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lllll} & \text { Coeff } & \text { StdError } & \text { t Stat } & p \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.5,what are the predicted sales (in millions of dollars)for a company spending $100 million on capital and $100 million on wages?

A) 20,455.98
B) 17,277.49
C) 16,520.07
D) 15,800.00
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
32
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the adjusted r2 is____________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
33
Instruction 13.5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression.
OUTPUT
SUMMARY
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adj. R Square 0.662 Std. Error 17501.643 Observations 26\begin{array} { l l } \text { Regression Statistics } & \\ \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adj. R Square } & 0.662 \\ \text { Std. Error } & 17501.643 \\ \text { Observations } & 26 \end{array}

ANOVA
dfSSMSFSignif FRegression215579777040778988852025.4320.0001Residual 237045072780306307512Total 2522624849820\begin{array}{llllll} & d f& SS &{ MS } & F & \text{Signif F} \\\text{Regression} & 2 & 15579777040&7789888520 & 25.432 & 0.0001 \\\text{Residual }& 23 & 7045072780&306307512 & & \\\text{Total }& 25 & 22624849820 & &\end{array}


 Coeff  StdError  t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lllll} & \text { Coeff } & \text { StdError } & \text { t Stat } & p \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.5,what are the predicted sales (in millions of dollars)for a company spending $500 million on capital and $200 million on wages?

A) 17,277.49
B) 15,800.00
C) 16,520.07
D) 20,455.98
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
34
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the estimated mean change in insurance premiums for every two additional tickets received is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
35
Instruction 13.9
As a project for his business statistics class, a student examined the factors that determined parking meter rates throughout the campus area. Data were collected for the price per hour of parking, number of city blocks to the centre of the university and one of the three jurisdictions: on campus, in the CBD and off campus or outside of the CBD and off campus. The population regression model hypothesised is:
Yi = ? + ?1x1i + ?2x2i + ?3x2i + ?i
Where
Y is the meter price
x1 is the number of blocks to the centre of the university
x2 is a dummy variable that takes the value 1 if the meter is located in the CBD and off campus and the value 0 otherwise
x3 is a dummy variable that takes the value 1 if the meter is located outside of the CBD and off campus, and the value 0 otherwise
The following Excel results are obtained:
 Regression  Statistics  Multiple R 0.9659 R Square 0.9331 Adj. R Square 0.9294 Standard  Error 0.0327 Observations 58\begin{array}{|l|r|}\hline\text { Regression } & \text { Statistics } \\\hline \text { Multiple R } & 0.9659 \\\hline \text { R Square } & 0.9331 \\\hline \text { Adj. R Square } & 0.9294 \\\hline \text { Standard } & \\\text { Error } & 0.0327 \\\hline \text { Observations } & 58\\\hline\end{array}

 ANOVA d SS MSF Signif F Regression 30.80940.2698251.19950.0000 Residual 540.058 d0.0010 Total 570.8675\begin{array}{|c|c|c|c|c|c|}\hline\text { ANOVA }\\\hline & d & \text { SS } & \mathrm{MS} & F & \text { Signif } F \\\hline \text { Regression } & 3 & 0.8094 & 0.2698 & 251.1995 & 0.0000 \\\hline \text { Residual } & 54 & 0.058 \mathrm{~d} & 0.0010 & & \\\hline \text { Total } & 57 & 0.8675 & & & \\\hline\end{array}

 Coef  Stol Error  t Stat p-value  Intercept 0.51180.01337.46752.4904X10.00450.00341.32760.1898X20.23920.012319.39420.0000X30.00020.01230.02140.9829\begin{array}{|l|r|r|r|r|}\hline & \text { Coef } & \text { Stol Error } & \text { t Stat } & p \text {-value } \\\hline \text { Intercept } & 0.5118 & 0.013 & 37.4675 & 2.4904 \\\hline X_{1} & -0.0045 & 0.0034 & -1.3276 & 0.1898 \\\hline X_{2} & -0.2392 & 0.0123 & -19.3942 & 0.0000 \\\hline X_{3} & -0.0002 & 0.0123 & -0.0214 & 0.9829 \\\hline\end{array}

-Referring to Instruction 13.9,predict the meter rate per hour if one parks outside of the CBD and off campus three blocks from the centre of the university.

A) $0.4981
B) $0.2589
C) $0.0139
D) $0.2604
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
36
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,to test the significance of the multiple regression model,the p-value of the test statistic in the sample is___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
37
Instruction 13.10
The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries) and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending:
 Regression  Statistics  Multiple R 0.7930 R Square 0.6288 Adj. R Square 0.602 Standard  Error 10.4570 Observations 47\begin{array}{|l|r|}\hline\text { Regression } & \text { Statistics } \\\hline \text { Multiple R } & 0.7930 \\\hline \text { R Square } & 0.6288 \\\hline \text { Adj. R Square } & 0.602 \\\hline \text { Standard } & \\\text { Error } & 10.4570 \\\hline \text { Observations } & 47\\\hline\end{array}

 ANOVA  d  SS  MS  F  Signif F  Regression 37965.082655.0324.28020.0000 Residual 434702.02109.35 Total 4612667.11\begin{array}{|l|r|r|r|r|r|}\hline \text { ANOVA } & & & & \\\hline & \text { d } & \text { SS } & \text { MS } & \text { F } & \text { Signif F } \\\hline \text { Regression } & 3 & 7965.08 & 2655.03 & 24.2802 & 0.0000 \\\hline \text { Residual } & 43 & 4702.02 & 109.35 & & \\\hline \text { Total } & 46 & 12667.11 & & & \\\hline\end{array}


 Coeff  StolFrro  tSta  p-va/ue  Lower 95%  Upper 95%  Intercept 753.4225101.11497.45110.0000957.3401549.5050 % Attendance 8.50141.07717.89290.00006.329210.6735 Salary 0.0000006850.00060.00110.99910.00130.0013 Spending 0.00600.00461.28790.20470.00340.0153\begin{array}{|l|r|r|r|r|r|r|} \hline & \text { Coeff } & \text { StolFrro } & \text { tSta } & \text { p-va/ue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -753.4225 & 101.1149 & -7.4511 & 0.0000 & -957.3401 & -549.5050 \\\hline \text { \% Attendance } & 8.5014 & 1.0771 & 7.8929 & 0.0000 & 6.3292 & 10.6735 \\\hline \text { Salary } & 0.000000685 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\\hline \text { Spending } & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}

-Referring to Instruction 13.10,estimate the mean percentage of students passing the proficiency test for all the schools that have a daily mean of 95% of students attending class,a mean teacher salary of 40,000 dollars and an instructional spending per pupil of 2,000 dollars.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
38
Instruction 13.6
One of the most common questions of prospective house buyers pertains to the average cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following four variables to predict heating costs: the daily minimum outside temperature in degrees of Celsius (X1), the amount of insulation in cm (X2), the number of windows in the house (X3) and the age of the furnace in years (X4). Given below are the Microsoft Excel outputs of two regression models.
<strong>Instruction 13.6 One of the most common questions of prospective house buyers pertains to the average cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following four variables to predict heating costs: the daily minimum outside temperature in degrees of Celsius (X<sub>1</sub>), the amount of insulation in cm (X<sub>2</sub>), the number of windows in the house (X<sub>3</sub>) and the age of the furnace in years (X<sub>4</sub>). Given below are the Microsoft Excel outputs of two regression models.     Referring to Instruction 13.6,the estimated value of the partial regression parameter β<sub>1</sub> in Model 1 means that</strong> A) holding the effect of the other independent variables constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature by 4.51 degrees. B) holding the effect of the other independent variables constant, a 1% increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by 4.51%. C) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $4.51. D) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by $4.51. <strong>Instruction 13.6 One of the most common questions of prospective house buyers pertains to the average cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following four variables to predict heating costs: the daily minimum outside temperature in degrees of Celsius (X<sub>1</sub>), the amount of insulation in cm (X<sub>2</sub>), the number of windows in the house (X<sub>3</sub>) and the age of the furnace in years (X<sub>4</sub>). Given below are the Microsoft Excel outputs of two regression models.     Referring to Instruction 13.6,the estimated value of the partial regression parameter β<sub>1</sub> in Model 1 means that</strong> A) holding the effect of the other independent variables constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature by 4.51 degrees. B) holding the effect of the other independent variables constant, a 1% increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by 4.51%. C) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $4.51. D) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by $4.51.
Referring to Instruction 13.6,the estimated value of the partial regression parameter β1 in Model 1 means that

A) holding the effect of the other independent variables constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature by 4.51 degrees.
B) holding the effect of the other independent variables constant, a 1% increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by 4.51%.
C) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $4.51.
D) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in an estimated expected decrease in heating costs by $4.51.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
39
Instruction 13.10
The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries) and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending:
 Regression  Statistics  Multiple R 0.7930 R Square 0.6288 Adj. R Square 0.602 Standard  Error 10.4570 Observations 47\begin{array}{|l|r|}\hline\text { Regression } & \text { Statistics } \\\hline \text { Multiple R } & 0.7930 \\\hline \text { R Square } & 0.6288 \\\hline \text { Adj. R Square } & 0.602 \\\hline \text { Standard } & \\\text { Error } & 10.4570 \\\hline \text { Observations } & 47\\\hline\end{array}

 ANOVA  d  SS  MS  F  Signif F  Regression 37965.082655.0324.28020.0000 Residual 434702.02109.35 Total 4612667.11\begin{array}{|l|r|r|r|r|r|}\hline \text { ANOVA } & & & & \\\hline & \text { d } & \text { SS } & \text { MS } & \text { F } & \text { Signif F } \\\hline \text { Regression } & 3 & 7965.08 & 2655.03 & 24.2802 & 0.0000 \\\hline \text { Residual } & 43 & 4702.02 & 109.35 & & \\\hline \text { Total } & 46 & 12667.11 & & & \\\hline\end{array}


 Coeff  StolFrro  tSta  p-va/ue  Lower 95%  Upper 95%  Intercept 753.4225101.11497.45110.0000957.3401549.5050 % Attendance 8.50141.07717.89290.00006.329210.6735 Salary 0.0000006850.00060.00110.99910.00130.0013 Spending 0.00600.00461.28790.20470.00340.0153\begin{array}{|l|r|r|r|r|r|r|} \hline & \text { Coeff } & \text { StolFrro } & \text { tSta } & \text { p-va/ue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -753.4225 & 101.1149 & -7.4511 & 0.0000 & -957.3401 & -549.5050 \\\hline \text { \% Attendance } & 8.5014 & 1.0771 & 7.8929 & 0.0000 & 6.3292 & 10.6735 \\\hline \text { Salary } & 0.000000685 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\\hline \text { Spending } & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}

-Referring to Instruction 13.10,which of the following is a correct statement?

A) The daily mean of the percentage of students attending class is expected to go up by an estimated 8.50% when the percentage of students passing the proficiency test increases by 1% holding constant the effects of all the remaining independent variables.
B) The mean percentage of students passing the proficiency test is estimated to go up by 8.50% when daily mean of percentage of students attending class increases by 1%.
C) The daily mean of the percentage of students attending class is expected to go up by an estimated 8.50% when the percentage of students passing the proficiency test increases by 1%.
D) The mean percentage of students passing the proficiency test is estimated to go up by 8.50% when daily mean of the percentage of students attending class increases by 1% holding constant the effects of all the remaining independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
40
Instruction 13.7
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premium depends very much on the age of the individual, the number of traffic tickets received by the individual and the population density of the city in which the individual lives. You performed a regression analysis in Microsoft Excel and obtained the following information:
RegressionAnalysis  MultipleR 0.63 R Square 0.40 Adj. R Square 0.23 Standard  Error 50.00 Observations 15.00 ANOVA  df SS  MS F Signif F  Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coeff  StdError  t Stat  p-value  Lower 99.0% Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 11.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{|l|l|l|l|l|l|l|}\hline \text {Regression}&\text {Analysis }\\\hline \text { MultipleR } &\quad & 0.63 \\\hline \text { R Square } && 0.40 \\\hline \text { Adj. R Square } && 0.23 \\\hline \text { Standard } & \\\text { Error } & & 50.00\\\hline \text { Observations } & & 15.00 \\\hline & & & & & \\\hline \text { ANOVA } &\\\hline & \text { df}& \text { SS } & \text { MS } & F & \text { Signif F } \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\hline \text { Residual } & 11 & 27496.82 & & & \\\hline \text { Total } & & 45479.54 & & & \\\hline & & & & & \\\hline& \text { Coeff } & \text { StdError } & \text { t Stat } & \text { p-value } & \text { Lower 99.0\%}&\text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\hline \text { AGE } & 0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\hline \text { TICKETS } & 11.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\hline \text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91\\\hline\end{array}

-Referring to Instruction 13.7,the regression sum of squares that is missing in the ANOVA table should be ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
41
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the value of the adjusted coefficient of multiple determination,r2adj,is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
42
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the estimate of the unit change in the mean of Y per unit change in X4,taking into account the effects of the other three variables,is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
43
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The appropriate alternative hypothesis is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
44
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the critical value of an F test on the entire regression for a level of significance of 0.01 is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
45
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the p-value of the F test for the significance of the entire regression is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
46
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the net regression coefficient of X2 is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
47
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the value of the adjusted coefficient of multiple determination,adjusted r2,is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
48
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the value of the coefficient of multiple determination,r2Y.1234,is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
49
Instruction 13.14
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1.
Model 1
Regression Statistics
 Multiple R 0.7035 R Square 0.4949 Adj. R Square 0.4030 Std. Error 18.4861 Observations 40\begin{array} { l l } \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adj. R Square } & 0.4030 \\ \text { Std. Error } & 18.4861 \\ \text { Observations } & 40 \end{array}

ANOVA
df SS  MS F Signiff  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 39223325.9 Coeff  StdError  tStat p value  Lower 95%  Upper95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array} { l l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } & \\ \text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 & \\ \text { Residual } & 33 & 11277.2586 & 341.7351 & & & \\ \text { Total } & 39 & 223325.9 & & & & \\ & & & & & & \\ & \text { Coeff } & \text { StdError } & \text { tStat } & p \text { value } & \text { Lower 95\% } & \text { Upper95\% } \\ \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below:
Mode 2
Regression Statistics
 Multiple R 0.6391 R Square 0.4085 Adj. R Square 0.3765 Std. Error 18.8929 Observations 40\begin{array} { l l } \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adj. R Square } & 0.3765 \\ \text { Std. Error } & 18.8929 \\ \text { Observations } & 40 \end{array}
ANOVA
df SS  MS F Signiff  Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coeff  StdError t Stat p value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\ \text { Residual } & 37 & 13206.8103 & 356.9408 & & \\ \text { Total } & 39 & 22325.9 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 & \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 & \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 & \end{array}

-Referring to Instruction 13.14 Model 1,predict the number of weeks being unemployed due to a layoff for a worker who is a 30-year-old,has 10 years of education,has 15 years of experience at the previous job,is married,is the head of household and is a manager.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
50
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the predicted salary for a 35-year-old person with 10 years of experience,3 degrees and 1 previous job is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
51
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The critical value of the F test for a level of significance of 0.05 is ___________
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
52
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The p-value of the test is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
53
Instruction 13.14
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1.
Model 1
Regression Statistics
 Multiple R 0.7035 R Square 0.4949 Adj. R Square 0.4030 Std. Error 18.4861 Observations 40\begin{array} { l l } \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adj. R Square } & 0.4030 \\ \text { Std. Error } & 18.4861 \\ \text { Observations } & 40 \end{array}

ANOVA
df SS  MS F Signiff  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 39223325.9 Coeff  StdError  tStat p value  Lower 95%  Upper95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array} { l l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } & \\ \text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 & \\ \text { Residual } & 33 & 11277.2586 & 341.7351 & & & \\ \text { Total } & 39 & 223325.9 & & & & \\ & & & & & & \\ & \text { Coeff } & \text { StdError } & \text { tStat } & p \text { value } & \text { Lower 95\% } & \text { Upper95\% } \\ \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below:
Mode 2
Regression Statistics
 Multiple R 0.6391 R Square 0.4085 Adj. R Square 0.3765 Std. Error 18.8929 Observations 40\begin{array} { l l } \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adj. R Square } & 0.3765 \\ \text { Std. Error } & 18.8929 \\ \text { Observations } & 40 \end{array}
ANOVA
df SS  MS F Signiff  Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coeff  StdError t Stat p value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\ \text { Residual } & 37 & 13206.8103 & 356.9408 & & \\ \text { Total } & 39 & 22325.9 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 & \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 & \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 & \end{array}

-Referring to Instruction 13.14 Model 1,estimate the mean number of weeks being unemployed due to a layoff for a worker who is a 30-year-old,has 10 years of education,has 15 years of experience at the previous job,is married,is the head of household and is a manager.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
54
When an additional explanatory variable is introduced into a multiple regression model,the coefficient of multiple determination will never decrease.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
55
Instruction 13.14
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1.
Model 1
Regression Statistics
 Multiple R 0.7035 R Square 0.4949 Adj. R Square 0.4030 Std. Error 18.4861 Observations 40\begin{array} { l l } \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adj. R Square } & 0.4030 \\ \text { Std. Error } & 18.4861 \\ \text { Observations } & 40 \end{array}

ANOVA
df SS  MS F Signiff  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 39223325.9 Coeff  StdError  tStat p value  Lower 95%  Upper95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array} { l l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } & \\ \text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 & \\ \text { Residual } & 33 & 11277.2586 & 341.7351 & & & \\ \text { Total } & 39 & 223325.9 & & & & \\ & & & & & & \\ & \text { Coeff } & \text { StdError } & \text { tStat } & p \text { value } & \text { Lower 95\% } & \text { Upper95\% } \\ \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below:
Mode 2
Regression Statistics
 Multiple R 0.6391 R Square 0.4085 Adj. R Square 0.3765 Std. Error 18.8929 Observations 40\begin{array} { l l } \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adj. R Square } & 0.3765 \\ \text { Std. Error } & 18.8929 \\ \text { Observations } & 40 \end{array}
ANOVA
df SS  MS F Signiff  Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coeff  StdError t Stat p value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\ \text { Residual } & 37 & 13206.8103 & 356.9408 & & \\ \text { Total } & 39 & 22325.9 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 & \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 & \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 & \end{array}

-Referring to Instruction 13.14 Model 1,which of the following is a correct statement?

A) On average, a worker who is a year older is estimated to stay jobless shorter by approximately 1.35 weeks, while holding constant the effects of all the remaining independent variables.
B) On average, a worker who is a year older is estimated to stay jobless longer by approximately 0.62 weeks, while holding constant the effects of all the remaining independent variables.
C) On average, a worker who is a year older is estimated to stay jobless longer by approximately 1.29 weeks, while holding constant the effects of all the remaining independent variables.
D) On average, a worker who is a year older is estimated to stay jobless longer by approximately 32.66 weeks, while holding constant the effects of all the remaining independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
56
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The value of the F test statistic is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
57
The coefficient of multiple determination r2 measures the proportion of variation in Y that is explained by X1 and X2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
58
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the value of the F statistic for testing the significance of the entire regression is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
59
Instruction 13.13
A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
 OUTPUT \text { OUTPUT }
 SUMMARY Regression  Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20\begin{array}{ll}\text { SUMMARY}\\\text { Regression }&\text { Statistics}\\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adj. R Square } & 0.979 \\\text { Std. Error } & 2.26743 \\\text { Observations } & 20\end{array}

 ANOVA  df  SS  MS F Signif F  Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{l}\text { ANOVA }\\\begin{array}{llllll} & \text { df } & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}\end{array}

 Coeff  Std Error t Stat p value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lllll} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text { value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}

Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.13,the analyst wants to use an F test to test H0: β\beta 1 = β\beta 2 = β\beta 3 = β\beta 4 = 0.The appropriate alternative hypothesis is ___________
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
60
AU: Question 37 is the same as Question 36. Please check.
Instruction 13.12
AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included.
The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output:
OUTPUT
SUMMARY
 Regression Statistics  MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6\begin{array} { l l } \text { Regression Statistics } & \\ \text { MultipleR } & 0.916 \\ \text { R Square } & 0.839 \\ \text { Adj. R Square } & 0.732 \\ \text { Std. Error } & 0.24685 \\ \text { Observations } & 6 \end{array}

ANOVA
df SS  MS F Signiff  Regression 20.952190.476107.8130.0646 Residual 30.182810.06094 Total 51.13500 Coeff  StdError t Stat p value  Intercept 4.5938971.133745424.0520.0271 GDP 0.2472700.062684853.9450.0290 Price 0.0014430.001012411.4250.2494\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 0.95219 & 0.47610 & 7.813 & 0.0646 \\ \text { Residual } & 3 & 0.18281 & 0.06094 & & \\ \text { Total } & 5 & 1.13500 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & 4.593897 & 1.13374542 & 4.052 & 0.0271 & \\ \text { GDP } & - 0.247270 & 0.06268485 & - 3.945 & 0.0290 & \\ \text { Price } & 0.001443 & 0.00101241 & 1.425 & 0.2494 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.12,the value of the coefficient of multiple determination,r2Y.12,is ___________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
61
In calculating the standard error of the estimate,SYX = MSE\sqrt { \mathrm { MSE } } there are n * k * 1 degrees of freedom,where n is the sample size and k represents the number of independent variables in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
62
In a multiple regression model,which of the following is correct regarding the value of the adjusted r2?

A) It has to be larger than the coefficient of multiple determination.
B) It can be larger than 1.
C) It can be negative.
D) It has to be positive.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
63
The variation attribuInstruction to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by

A) regression mean squares.
B) total sum of squares.
C) regression sum of squares.
D) error sum of squares.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
64
From the coefficient of multiple determination,you cannot detect the strength of the relationship between Y and any individual independent variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
65
Instruction 13.15
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}

ANOVA
df SS  MS F Signiff  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.15,when the economist used a simple linear regression model with consumption as the dependent variable and GDP as the independent variable,he obtained an r2 value of 0.971.What additional percentage of the total variation of consumption has been explained by including aggregate prices in the multiple regression?

A) 98.2
B) 1.1
C) 11.1
D) 2.8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
66
Instruction 13.15
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}

ANOVA
df SS  MS F Signiff  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.15,the p-value for GDP is

A) 0.01.
B) 0.05.
C) 0.001.
D) None of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
67
The total sum of squares (SST)in a regression model will never exceed the regression sum of squares (SSR).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
68
Instruction 13.16
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
OUTPUT
SUMMARY
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adj. R Square } & 0.726 \\ \text { Std. Error } & 5.195 \\ \text { Observations } & 50 \end{array}

ANOVA
df SS  MS F Signiff  Regression 3605.7736901.44340.0001 Residual 1214.226426.9828 Total 494820.0000 Coeff  StdError t Stat p value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & & 3605.7736 & 901.4434 & & 0.0001 \\ \text { Residual } & & 1214.2264 & 26.9828 & & \\ \text { Total } & 49 & 4820.0000 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 & \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 & \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 & \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.16,what fraction of the variability in house size is explained by income,size of family and education?

A) 74.8%
B) 33.4%
C) 27.0%
D) 86.5%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
69
A regression had the following results: SST = 102.55,SSE = 82.04.It can be said that 90.0% of the variation in the dependent variable is explained by the independent variables in the regression.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
70
When an explanatory variable is dropped from a multiple regression model,the coefficient of multiple determination can increase.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
71
A regression had the following results: SST = 102.55,SSE = 82.04.It can be said that 20.0% of the variation in the dependent variable is explained by the independent variables in the regression.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
72
The coefficient of multiple determination is calculated by taking the ratio of the regression sum of squares over the total sum of squares (SSR/SST)and subtracting that value from 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
73
A regression had the following results: SST = 82.55,SSE = 29.85.It can be said that 63.84% of the variation in the dependent variable is explained by the independent variables in the regression.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
74
You have just computed a regression in which the value of coefficient of multiple determination is 0.57.To determine if this indicates that the independent variables explain a significant portion of the variation in the dependent variable,you would perform an F test.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
75
When an additional explanatory variable is introduced into a multiple regression model,the adjusted r2 can never decrease.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
76
The coefficient of multiple determination measures the proportion of the total variation in the dependent variable that is explained by a set of independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
77
The coefficient of multiple determination r2Y.12

A) measures the proportion of variation in Y that is explained by X1 and X2.
B) measures the proportion of variation in Y that is explained by X1 holding X2 constant.
C) will have the same sign as b1.
D) measures the variation around the predicted regression equation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
78
When an explanatory variable is dropped from a multiple regression model,the adjusted r2 can increase.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
79
Instruction 13.15
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
OUTPUT
SUMMARY
Regression Statistics
 MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10\begin{array} { l l } \text { MultipleR } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adj. R Square } & 0.976 \\ \text { Std. Error } & 0.299 \\ \text { Observations } & 10 \end{array}

ANOVA
df SS  MS F Signiff  Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440 Coeff  StdError t Stat p value  Intercept 1.63350.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Signiff } \\ \text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\ \text { Residual } & 7 & 0.6277 & 0.0897 & & \\ \text { Total } & 9 & 34.0440 & & & \\ & & & & & \\ & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text { value } & \\ \text { Intercept } & - 1.6335 & 0.5674 & - 0.152 & 0.8837 & \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 & \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 & \end{array} Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error

-Referring to Instruction 13.15,the p-value for the aggregated price index is

A) 0.001.
B) 0.05.
C) 0.01.
D) None of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
80
In a multiple regression model,the value of the coefficient of multiple determination

A) can fall between any pair of real numbers.
B) has to fall between -1 and +1.
C) has to fall between -1 and 0.
D) has to fall between 0 and +1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.