Deck 1: Fundamentals

ملء الشاشة (f)
exit full mode
سؤال
The instantaneous voltage across a circuit is v(t)=678.8sinv(t)=678.8 \sin (ωt15)\left(\omega t-15^{\circ}\right) volts, and the instantaneous current entering the positive terminal if the circuit element is i(t)=200cos(ωt5)i(t)=200 \cos \left(\omega t-5^{\circ}\right) A. For these circuit elements, calculate (a) the instantaneous power absorbed, (b) the real power (state whether it is delivered or absorbed), (c) the reactive power (state whether delivered or absorbed), (d) the power factor (state whether lagging or leading).
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
The voltage v(t)=678.8cos(ωt+45)v(t)=678.8 \cos \left(\omega t+45^{\circ}\right) volts is applied to a load consisting of a 10W10-\mathrm{W} resistor in parallel with a capacitive reactance XC=25 W\mathrm{X}_{\mathrm{C}}=25 \mathrm{~W} . Calculate (a) the instantaneous power absorbed by the resistor, (b) the instantaneous power absorbed by the capacitor, (c) the real power absorbed by the resistor, (d) the reactive power delivered by the capacitor, (e) the load power factor.
سؤال
if the resistor and capacitor are connected in series.
سؤال
Consider a single-phase loadwith an applied voltage
Consider a single-phase loadwith an applied voltage   volts and load current   (a) Determinethe power triangle. (b) Find the power factor and specify whether it islagging or leading. (c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging.<div style=padding-top: 35px> volts and load current Consider a single-phase loadwith an applied voltage   volts and load current   (a) Determinethe power triangle. (b) Find the power factor and specify whether it islagging or leading. (c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging.<div style=padding-top: 35px>
(a) Determinethe power triangle.
(b) Find the power factor and specify whether it islagging or leading.
(c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging.
سؤال
A circuit consists of two impedances, Z1=2030ΩZ_{1}=20 \angle 30^{\circ} \Omega and Z2=14.1445ΩZ_{2}=14.14 \angle-45^{\circ} \Omega , in parallel, supplied by a source voltage V=10060V=100 \angle 60^{\circ} volts. Determine the power triangle for each of the impedances and for the source.
سؤال
An industrial plant consisting primarily of induction motor loads absorbs 1000 kW1000 \mathrm{~kW} at 0.7 power factor lagging. (a) Compute the required kVA rating of a shunt capacitor to improve the power factor to 0.9 lagging. (b) Calculate the resulting power factor if a synchronous motor rated 1000hp1000 \mathrm{hp} with 90%90 \% efficiency operating at rated load and at unity power factor is added to the plant instead of the capacitor. Assume constant voltage. (1hp=0.746 kW)(1 \mathrm{hp}=0.746 \mathrm{~kW})
سؤال
The real power delivered by a source to two impedances, Z1\mathrm{Z}_{1} =3+j5 W=3+j 5 \mathrm{~W} and Z2=10 W\mathrm{Z}_{2}=10 \mathrm{~W} , connected in parallel, is 2000 W2000 \mathrm{~W} . Determine (a) the real power absorbed by each of the impedances and (b) the source current.
سؤال
A single-phase source has a terminal voltage V=1200V=120 \angle 0^{\circ} volts and a current I=2530AI=25 \angle 30^{\circ} \mathrm{A} , which leaves the positive terminal of the source. Determine the real and reactive power, and state whether the source is delivering or absorbing each.
سؤال
A three-phase 25-kVA, 208-V, 60-Hz alternator, operating under balanced steady-state conditions, supplies a line current of 20 A per phase at a 0.8 lagging power factor and at rated voltage. Determine the power triangle for this operating condition.
سؤال
Three identical impedances ZΔ=20/60ΩZ_{\Delta}=20 / 60^{\circ} \Omega are connected in Δ\Delta to a balanced threephase 480V480-\mathrm{V} source by three identical line conductors with impedance ZL=Z_{\mathrm{L}}= (0.8+j0.6)Ω(0.8+j 0.6) \Omega per line. (a) Calculate the line-to-line voltage at the load terminals.
(b) Repeat part (a) when a Δ\Delta -connected capacitor bank with reactance (j20)Ω(-j 20) \Omega per phase is connected in parallel with the load.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/10
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 1: Fundamentals
1
The instantaneous voltage across a circuit is v(t)=678.8sinv(t)=678.8 \sin (ωt15)\left(\omega t-15^{\circ}\right) volts, and the instantaneous current entering the positive terminal if the circuit element is i(t)=200cos(ωt5)i(t)=200 \cos \left(\omega t-5^{\circ}\right) A. For these circuit elements, calculate (a) the instantaneous power absorbed, (b) the real power (state whether it is delivered or absorbed), (c) the reactive power (state whether delivered or absorbed), (d) the power factor (state whether lagging or leading).
(a) p(t)=v(t)i(t)=[678.8cos(ωt105)][200cos(ωt5)]p(t)=v(t) i(t)=\left[678.8 \cos \left(\omega t-105^{\circ}\right)\right]\left[200 \cos \left(\omega t-5^{\circ}\right)\right]
=12(678.8)(200)[cos100+cos(2ωt110)]=1.179×104+6.788×104cos(2ωt110)W\begin{aligned}& =\frac{1}{2}(678.8)(200)\left[\cos 100^{\circ}+\cos \left(2 \omega t-110^{\circ}\right)\right] \\& =-1.179 \times 10^{4}+6.788 \times 10^{4} \cos \left(2 \omega t-110^{\circ}\right) \mathrm{W}\end{aligned}
(b) P=VIcos(δβ)=480×141.4cos(105+5)P=V I \cos (\delta-\beta)=480 \times 141.4 \cos \left(-105^{\circ}+5^{\circ}\right)
=1.179×104 W Absorbed =+11.79 kW Delivered =-1.179 \times 10^{4} \mathrm{~W} \text { Absorbed }=+11.79 \mathrm{~kW} \text { Delivered }
(c) Q=VIsin(δβ)=480×141.4sin(100)Q=V I \sin (\delta-\beta)=480 \times 141.4 \sin \left(-100^{\circ}\right)
=6.685×104 VAR Absorbed =+66.85kVAR Delivered =-6.685 \times 10^{4} \text { VAR Absorbed }=+66.85 \mathrm{kVAR} \text { Delivered }
2
The voltage v(t)=678.8cos(ωt+45)v(t)=678.8 \cos \left(\omega t+45^{\circ}\right) volts is applied to a load consisting of a 10W10-\mathrm{W} resistor in parallel with a capacitive reactance XC=25 W\mathrm{X}_{\mathrm{C}}=25 \mathrm{~W} . Calculate (a) the instantaneous power absorbed by the resistor, (b) the instantaneous power absorbed by the capacitor, (c) the real power absorbed by the resistor, (d) the reactive power delivered by the capacitor, (e) the load power factor.
(a) pR(t)=678.8×67.88cos2(ωt+45)p_{R}(t)=678.8 \times 67.88 \cos ^{2}\left(\omega t+45^{\circ}\right)
=4.608×104(12)[1+cos(2ωt+90)]=2.304×104+2.304×104cos(2ωt+90)W\begin{aligned}& =4.608 \times 10^{4}\left(\frac{1}{2}\right)\left[1+\cos \left(2 \omega t+90^{\circ}\right)\right] \\& =2.304 \times 10^{4}+2.304 \times 10^{4} \cos \left(2 \omega t+90^{\circ}\right) \mathrm{W}\end{aligned}
(b) px(t)=[678.8cos(ωt+45)][27.15cos(ωt+45+90)]p_{x}(t)=\left[678.8 \cos \left(\omega t+45^{\circ}\right)\right]\left[27.15 \cos \left(\omega t+45^{\circ}+90^{\circ}\right)\right]
=1.843×104cos(ωt+45)cos(ωt+135)=1.843×104(12)[cos(90)+cos(2ωt+180)]=9.215×103cos(2ωt+180)=9.215×103sin2ωt W\begin{aligned}& =1.843 \times 10^{4} \cos \left(\omega t+45^{\circ}\right) \cos \left(\omega t+135^{\circ}\right) \\& =1.843 \times 10^{4}\left(\frac{1}{2}\right)\left[\cos \left(-90^{\circ}\right)+\cos \left(2 \omega t+180^{\circ}\right)\right] \\& =9.215 \times 10^{3} \cos \left(2 \omega t+180^{\circ}\right) \\& =-9.215 \times 10^{3} \sin 2 \omega t \mathrm{~W}\end{aligned}
(c) P=V2/R=(678.8/2)2/10=2.304×104 WP=V^{2} / R=(678.8 / \sqrt{2})^{2} / 10=2.304 \times 10^{4} \mathrm{~W} Absorbed
(d) Q=V2/X=(678.8/2)2/25=9.215×103Q=V^{2} / X=(678.8 / \sqrt{2})^{2} / 25=9.215 \times 10^{3} VAR Delivered
(e) (βδ)=tan1(Q/P)=tan1(9.215×1032.304×104)=21.8(\beta-\delta)=\tan ^{-1}(Q / P)=\tan ^{-1}\left(\frac{9.215 \times 10^{3}}{2.304 \times 10^{4}}\right)=21.8^{\circ}
pf=cos(δβ)=cos(21.8)=0.9285 Leading p f=\cos (\delta-\beta)=\cos \left(-21.8^{\circ}\right)=0.9285 \text { Leading }
3
if the resistor and capacitor are connected in series.
(a) Ƶˉ=Rjxc=10j25=26.9368.2Ω\bar{Ƶ}=R-j x_{c}=10-j 25=26.93 \angle-68.2^{\circ} \Omega
i(t)=(678.8/26.93)cos(ωt+45+68.2)i(t)=(678.8 / 26.93) \cos \left(\omega t+45^{\circ}+68.2^{\circ}\right)
=25.21cos(ωt+113.2)A=25.21 \cos \left(\omega t+113.2^{\circ}\right) \mathrm{A}
pR(t)=[25.21cos(ωt+113.2)][252.1cos(ωt+113.2)]p_{R}(t)=\left[25.21 \cos \left(\omega t+113.2^{\circ}\right)\right]\left[252.1 \cos \left(\omega t+113.2^{\circ}\right)\right]
=6.355×103+cos2(ωt+113.2)=6.355 \times 10^{3}+\cos ^{2}\left(\omega t+113.2^{\circ}\right)
=3.178×103+3.178×103cos(2ωt+226.4)W=3.178 \times 10^{3}+3.178 \times 10^{3} \cos \left(2 \omega t+226.4^{\circ}\right) \mathrm{W}
(b) px(t)=[25.21cos(ωt+113.2)][630.2cos(ωt+113.290)]p_{x}(t)=\left[25.21 \cos \left(\omega t+113.2^{\circ}\right)\right]\left[630.2 \cos \left(\omega t+113.2^{\circ}-90^{\circ}\right)\right]
=7.944×103sin[2(ωt+113.2)]W=7.944 \times 10^{3} \sin \left[2\left(\omega t+113.2^{\circ}\right)\right] \mathrm{W}
(c) P=I2R=(25.21/2)2(10)=3.178 kWP=I^{2} R=(25.21 / \sqrt{2})^{2}(10)=3.178 \mathrm{~kW} Absorbed
(d) Q=I2X=(25.21/2)2(25)=7.944kVARQ=I^{2} X=(25.21 / \sqrt{2})^{2}(25)=7.944 \mathrm{kVAR} Delivered
(e) pf=cos[tan1(Q/P)]=cos[tan1(7.944/3.178)]p f=\cos \left[\tan ^{-1}(Q / P)\right]=\cos \left[\tan ^{-1}(7.944 / 3.178)\right] =0.3714=0.3714 Leading
4
Consider a single-phase loadwith an applied voltage
Consider a single-phase loadwith an applied voltage   volts and load current   (a) Determinethe power triangle. (b) Find the power factor and specify whether it islagging or leading. (c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging. volts and load current Consider a single-phase loadwith an applied voltage   volts and load current   (a) Determinethe power triangle. (b) Find the power factor and specify whether it islagging or leading. (c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging.
(a) Determinethe power triangle.
(b) Find the power factor and specify whether it islagging or leading.
(c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
5
A circuit consists of two impedances, Z1=2030ΩZ_{1}=20 \angle 30^{\circ} \Omega and Z2=14.1445ΩZ_{2}=14.14 \angle-45^{\circ} \Omega , in parallel, supplied by a source voltage V=10060V=100 \angle 60^{\circ} volts. Determine the power triangle for each of the impedances and for the source.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
6
An industrial plant consisting primarily of induction motor loads absorbs 1000 kW1000 \mathrm{~kW} at 0.7 power factor lagging. (a) Compute the required kVA rating of a shunt capacitor to improve the power factor to 0.9 lagging. (b) Calculate the resulting power factor if a synchronous motor rated 1000hp1000 \mathrm{hp} with 90%90 \% efficiency operating at rated load and at unity power factor is added to the plant instead of the capacitor. Assume constant voltage. (1hp=0.746 kW)(1 \mathrm{hp}=0.746 \mathrm{~kW})
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
7
The real power delivered by a source to two impedances, Z1\mathrm{Z}_{1} =3+j5 W=3+j 5 \mathrm{~W} and Z2=10 W\mathrm{Z}_{2}=10 \mathrm{~W} , connected in parallel, is 2000 W2000 \mathrm{~W} . Determine (a) the real power absorbed by each of the impedances and (b) the source current.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
8
A single-phase source has a terminal voltage V=1200V=120 \angle 0^{\circ} volts and a current I=2530AI=25 \angle 30^{\circ} \mathrm{A} , which leaves the positive terminal of the source. Determine the real and reactive power, and state whether the source is delivering or absorbing each.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
9
A three-phase 25-kVA, 208-V, 60-Hz alternator, operating under balanced steady-state conditions, supplies a line current of 20 A per phase at a 0.8 lagging power factor and at rated voltage. Determine the power triangle for this operating condition.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
10
Three identical impedances ZΔ=20/60ΩZ_{\Delta}=20 / 60^{\circ} \Omega are connected in Δ\Delta to a balanced threephase 480V480-\mathrm{V} source by three identical line conductors with impedance ZL=Z_{\mathrm{L}}= (0.8+j0.6)Ω(0.8+j 0.6) \Omega per line. (a) Calculate the line-to-line voltage at the load terminals.
(b) Repeat part (a) when a Δ\Delta -connected capacitor bank with reactance (j20)Ω(-j 20) \Omega per phase is connected in parallel with the load.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.