Deck 6: The Laplace Transform

ملء الشاشة (f)
exit full mode
سؤال
Consider the following function:
F(t) =  <strong>Consider the following function: F(t) =   Which of these properties does f satisfy? Select all that apply.</strong> A) f is piecewise continuous on [0,  \infty ). B) f is of exponential order. C) f is continuous on [0,  \infty ). D)   diverges. E) The Laplace transform of f exists. <div style=padding-top: 35px>
Which of these properties does f satisfy? Select all that apply.

A) f is piecewise continuous on [0, \infty ).
B) f is of exponential order.
C) f is continuous on [0, \infty ).
D)  <strong>Consider the following function: F(t) =   Which of these properties does f satisfy? Select all that apply.</strong> A) f is piecewise continuous on [0,  \infty ). B) f is of exponential order. C) f is continuous on [0,  \infty ). D)   diverges. E) The Laplace transform of f exists. <div style=padding-top: 35px>  diverges.
E) The Laplace transform of f exists.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Consider the following function:
F(t) =  <strong>Consider the following function: F(t) =   Which of the following statements is true?</strong> A) The Laplace transform of f does not exist because f is not of exponential order. B)   converges. C) f is continuous on [0,  \infty ) D) f is piecewise continuous on [0,  \infty ), but the Laplace transform of f does not exist. <div style=padding-top: 35px>
Which of the following statements is true?

A) The Laplace transform of f does not exist because f is not of exponential order.
B)  <strong>Consider the following function: F(t) =   Which of the following statements is true?</strong> A) The Laplace transform of f does not exist because f is not of exponential order. B)   converges. C) f is continuous on [0,  \infty ) D) f is piecewise continuous on [0,  \infty ), but the Laplace transform of f does not exist. <div style=padding-top: 35px>  converges.
C) f is continuous on [0, \infty )
D) f is piecewise continuous on [0, \infty ), but the Laplace transform of f does not exist.
سؤال
Compute the Laplace transform of f:
F(t) = <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 <div style=padding-top: 35px>

A) <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 <div style=padding-top: 35px> , s > 0
B) <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 <div style=padding-top: 35px> , s > 0
C) <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 <div style=padding-top: 35px> , s > 0
D) <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 <div style=padding-top: 35px> , s > 0
سؤال
Compute the Laplace transform of f:
F(t) =  <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   \frac{12+12 e^{-7 s}}{s}+\frac{33 e^{-7 s}}{s}+3 e^{-7 s}\left(\frac{1+7 s}{s^{2}}\right)   B)   \frac{12-12 e^{-7 s}}{s}+\frac{33 e^{-7 s}}{s}-3 e^{-7 s}\left(\frac{1+7 s}{s^{2}}\right)   C)   \frac{12-12 e^{-7 s}}{s^{2}}+\frac{33 e^{-7 s}}{s^{2}}-3 e^{-7 s}\left(\frac{1+7 s}{s}\right)   D)   \frac{12-12 e^{-7 s}}{s^{2}}-\frac{33 e^{-7 s}}{s^{2}}+3 e^{-7 s}\left(\frac{1+7 s}{s}\right)   <div style=padding-top: 35px>

A) 12+12e7ss+33e7ss+3e7s(1+7ss2) \frac{12+12 e^{-7 s}}{s}+\frac{33 e^{-7 s}}{s}+3 e^{-7 s}\left(\frac{1+7 s}{s^{2}}\right)
B) 1212e7ss+33e7ss3e7s(1+7ss2) \frac{12-12 e^{-7 s}}{s}+\frac{33 e^{-7 s}}{s}-3 e^{-7 s}\left(\frac{1+7 s}{s^{2}}\right)
C) 1212e7ss2+33e7ss23e7s(1+7ss) \frac{12-12 e^{-7 s}}{s^{2}}+\frac{33 e^{-7 s}}{s^{2}}-3 e^{-7 s}\left(\frac{1+7 s}{s}\right)
D) 1212e7ss233e7ss2+3e7s(1+7ss) \frac{12-12 e^{-7 s}}{s^{2}}-\frac{33 e^{-7 s}}{s^{2}}+3 e^{-7 s}\left(\frac{1+7 s}{s}\right)
سؤال
The integral The integral   converges.<div style=padding-top: 35px> converges.
سؤال
Which of these statements is true?

A) 0t4e4tdt \int_{0}^{\infty} t^{-4} e^{4 t} d t converges because e4tt4e4t \frac{e^{4 t}}{t^{4}} \leq e^{4 t} , for all t1 t \geq 1 and 0e4tdt \int_{0}^{\infty} e^{4 t} d t converges.
B) 0t2e5tdt \int_{0}^{\infty} t^{2} e^{-5 t} d t diverges because t2e5tt2 t^{2} e^{-5 t} \geq t^{2} , for all t1 t \geq 1 and 0t2dt \int_{0}^{\infty} t^{2} d t converges.
C) 0A4e2tdt \int_{0}^{\infty} A^{4} e^{-2 t} d t converges because tte2t t^{t} e^{-2 t} is of exponential order.
D) 0t4e2tdt \int_{0}^{\infty} t^{-4} e^{2 t} d t converges because t4e2t t^{-4} e^{2 t} is of exponential order.
سؤال
Compute the Laplace transform of f(t) = 4.2.

A) 18s236+4ss236,s>6 \frac{18}{s^{2}-36}+\frac{-4 s}{s^{2}-36}, s>6
B) 3ss236+4s236,s>6 \frac{3 s}{s^{2}-36}+\frac{-4}{s^{2}-36}, s>6
C) 18s2+36+4ss2+36,s>0 \frac{18}{s^{2}+36}+\frac{-4 s}{s^{2}+36}, s>0
D) 3ss2+36+4s2+36,s>0 \frac{3 s}{s^{2}+36}+\frac{-4}{s^{2}+36}, s>0
سؤال
Compute the Laplace transform of f(t) = 6t - 5 <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> .

A) <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> + <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> , s > 3
B) <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> + <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> , s > -3
C) <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> + <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> , s > 3
D) <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> + <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 <div style=padding-top: 35px> , s > -3
سؤال
Compute the Laplace transform of f(t) = 3 sin(6t) - 4 cos(6t).

A) 18s236+4ss236,s>6 \frac{18}{s^{2}-36}+\frac{-4 s}{s^{2}-36}, s>6
B) 3ss236+4s236,s>6 \frac{3 s}{s^{2}-36}+\frac{-4}{s^{2}-36}, s>6
C) 18s2+36+4ss2+36,s>0 \frac{18}{s^{2}+36}+\frac{-4 s}{s^{2}+36}, s>0
D) 3ss2+36+4s2+36,s>0 \frac{3 s}{s^{2}+36}+\frac{-4}{s^{2}+36}, s>0
سؤال
Compute the Laplace transform of f(t) = t cos(10t).

A) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Compute the Laplace transform of f(t) = sin(2 π\pi t)cos(2 π\pi t).

A)  <strong>Compute the Laplace transform of f(t) = sin(2  \pi t)cos(2  \pi t).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Compute the Laplace transform of f(t) = sin(2  \pi t)cos(2  \pi t).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Compute the Laplace transform of f(t) = sin(2  \pi t)cos(2  \pi t).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Compute the Laplace transform of f(t) = sin(2  \pi t)cos(2  \pi t).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Compute the Laplace transform of f(t) = 3 + 10  <strong>Compute the Laplace transform of f(t) = 3 + 10   .</strong> A)   \frac{3}{s^{2}}+\frac{10 \cdot 8 !}{s^{9}}, s>0   B)   \frac{3}{s}+\frac{10 \cdot 8 !}{s^{9}}, s>0   C)   \frac{3}{s}+\frac{10 \cdot 8}{s^{9}}, s>0   D)   \frac{3}{s^{2}}+\frac{10 \cdot 9 !}{s^{8}}, s>0   <div style=padding-top: 35px>  .

A) 3s2+108!s9,s>0 \frac{3}{s^{2}}+\frac{10 \cdot 8 !}{s^{9}}, s>0
B) 3s+108!s9,s>0 \frac{3}{s}+\frac{10 \cdot 8 !}{s^{9}}, s>0
C) 3s+108s9,s>0 \frac{3}{s}+\frac{10 \cdot 8}{s^{9}}, s>0
D) 3s2+109!s8,s>0 \frac{3}{s^{2}}+\frac{10 \cdot 9 !}{s^{8}}, s>0
سؤال
Compute the inverse Laplace transform of F(s) =  <strong>Compute the inverse Laplace transform of F(s) =   +   .</strong> A)   \sqrt{17} t^{3}+\frac{9}{5} \sin (5 t)   B)   \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \cos (\sqrt{5} t)   C)   \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \sin (\sqrt{5} t)   D)   \frac{\sqrt{17}}{4 !} t+\frac{9}{\sqrt{5}} \cos (\sqrt{5})   E)   \sqrt{17} t^{3}+\frac{9}{5} \cos (5 t)   <div style=padding-top: 35px>  +  <strong>Compute the inverse Laplace transform of F(s) =   +   .</strong> A)   \sqrt{17} t^{3}+\frac{9}{5} \sin (5 t)   B)   \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \cos (\sqrt{5} t)   C)   \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \sin (\sqrt{5} t)   D)   \frac{\sqrt{17}}{4 !} t+\frac{9}{\sqrt{5}} \cos (\sqrt{5})   E)   \sqrt{17} t^{3}+\frac{9}{5} \cos (5 t)   <div style=padding-top: 35px>  .

A) 17t3+95sin(5t) \sqrt{17} t^{3}+\frac{9}{5} \sin (5 t)
B) 173!t3+95cos(5t) \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \cos (\sqrt{5} t)
C) 173!t3+95sin(5t) \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \sin (\sqrt{5} t)
D) 174!t+95cos(5) \frac{\sqrt{17}}{4 !} t+\frac{9}{\sqrt{5}} \cos (\sqrt{5})
E) 17t3+95cos(5t) \sqrt{17} t^{3}+\frac{9}{5} \cos (5 t)
سؤال
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of   </strong> A)   \frac{1}{5} t^{2}-\frac{1}{25} \cos (5 t)   B)   \frac{1}{5} t-\frac{1}{25} \sin (5 t)   C)   \frac{1}{5} t^{2}-\frac{1}{25} \sin (5 t)   D)   \frac{1}{5} t-\frac{1}{5 \sqrt{5}} \cos (\sqrt{5} t)   E)   \frac{1}{5} t-\frac{1}{5 \sqrt{5}} \sin (\sqrt{5} t)   <div style=padding-top: 35px>

A) 15t2125cos(5t) \frac{1}{5} t^{2}-\frac{1}{25} \cos (5 t)
B) 15t125sin(5t) \frac{1}{5} t-\frac{1}{25} \sin (5 t)
C) 15t2125sin(5t) \frac{1}{5} t^{2}-\frac{1}{25} \sin (5 t)
D) 15t155cos(5t) \frac{1}{5} t-\frac{1}{5 \sqrt{5}} \cos (\sqrt{5} t)
E) 15t155sin(5t) \frac{1}{5} t-\frac{1}{5 \sqrt{5}} \sin (\sqrt{5} t)
سؤال
Compute the inverse Laplace transform of F(s) =  <strong>Compute the inverse Laplace transform of F(s) =   .</strong> A)   \sin (81 t)+\frac{1}{81} \cos (9 t)   B)   \sin (9 t)+\frac{1}{9} \cos (9 t)   C)   \cos (9 t)+\frac{1}{9} \sin (9 t)   D)   \cos (81 t)+\frac{1}{81} \sin (9 t)   <div style=padding-top: 35px>  .

A) sin(81t)+181cos(9t) \sin (81 t)+\frac{1}{81} \cos (9 t)
B) sin(9t)+19cos(9t) \sin (9 t)+\frac{1}{9} \cos (9 t)
C) cos(9t)+19sin(9t) \cos (9 t)+\frac{1}{9} \sin (9 t)
D) cos(81t)+181sin(9t) \cos (81 t)+\frac{1}{81} \sin (9 t)
سؤال
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of  </strong> A)   e^{3 t}-e^{2 t}   B)   e^{2 t}+e^{3 t}   C)   e^{2 t}-e^{3 t}   D)   e^{-3 t}+e^{-2 t}   E)   e^{-2 t}+e^{-3 t}   F)   e^{-2 t}-e^{-3 t}   <div style=padding-top: 35px>

A) e3te2t e^{3 t}-e^{2 t}
B) e2t+e3t e^{2 t}+e^{3 t}
C) e2te3t e^{2 t}-e^{3 t}
D) e3t+e2t e^{-3 t}+e^{-2 t}
E) e2t+e3t e^{-2 t}+e^{-3 t}
F) e2te3t e^{-2 t}-e^{-3 t}
سؤال
Find the Laplace transform of the solution x(t) of the following initial value problem:  <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:   </strong> A)   \frac{4 s^{6}+27 s^{5}+8 \cdot 4 !}{s^{5}\left(s^{2}+7 s+3\right)}   B)   \frac{27 s^{5}-4 s^{6}+8 \cdot 4 !}{s^{5}\left(s^{2}+7 s+3\right)}   C)   \frac{27 s^{5}-4 s^{6}+8 \cdot 4 !}{s^{4}\left(s^{2}+7 s+3\right)}   D)   \frac{4 s^{6}-27 s^{5}+8 \cdot 4 !}{s^{4}\left(s^{2}+7 s+3\right)}   <div style=padding-top: 35px>

A) 4s6+27s5+84!s5(s2+7s+3) \frac{4 s^{6}+27 s^{5}+8 \cdot 4 !}{s^{5}\left(s^{2}+7 s+3\right)}
B) 27s54s6+84!s5(s2+7s+3) \frac{27 s^{5}-4 s^{6}+8 \cdot 4 !}{s^{5}\left(s^{2}+7 s+3\right)}
C) 27s54s6+84!s4(s2+7s+3) \frac{27 s^{5}-4 s^{6}+8 \cdot 4 !}{s^{4}\left(s^{2}+7 s+3\right)}
D) 4s627s5+84!s4(s2+7s+3) \frac{4 s^{6}-27 s^{5}+8 \cdot 4 !}{s^{4}\left(s^{2}+7 s+3\right)}
سؤال
Find the Laplace transform of the solution x(t) of the following initial value problem:  <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:   </strong> A)   \frac{3 s^{2}-8 s-12}{s^{3}+3 s^{2}+4 s+4}   B)   \frac{3 s^{2}-8 s-12}{s^{3}-3 s^{2}-4 s-4}   C)   \frac{3 s^{2}+8 s+12}{s^{3}+3 s^{2}+4 s+4}   D)   \frac{3 s^{2}+8 s+12}{s^{3}-3 s^{2}-4 s-4}   <div style=padding-top: 35px>

A) 3s28s12s3+3s2+4s+4 \frac{3 s^{2}-8 s-12}{s^{3}+3 s^{2}+4 s+4}
B) 3s28s12s33s24s4 \frac{3 s^{2}-8 s-12}{s^{3}-3 s^{2}-4 s-4}
C) 3s2+8s+12s3+3s2+4s+4 \frac{3 s^{2}+8 s+12}{s^{3}+3 s^{2}+4 s+4}
D) 3s2+8s+12s33s24s4 \frac{3 s^{2}+8 s+12}{s^{3}-3 s^{2}-4 s-4}
سؤال
Consider the following initial value problem:
Consider the following initial value problem:   (ii) Find the inverse Laplace transform of the answer in part (i) to find the solution x(t) of the initial value problem.  <div style=padding-top: 35px>
(ii) Find the inverse Laplace transform of the answer in part (i) to find the solution x(t) of the initial value problem.
Consider the following initial value problem:   (ii) Find the inverse Laplace transform of the answer in part (i) to find the solution x(t) of the initial value problem.  <div style=padding-top: 35px>
سؤال
Find the Laplace transform of the solution x(t) of the following initial value problem:
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:  </strong> A)   \frac{1}{s(s-4)(s-8)}   B)   \frac{1}{(s-4)(s-8)}   C)   \frac{1 s}{(s-4)(s-8)}   D)   \frac{1}{s(s+4)(s+8)}   E)   \frac{1 s}{(s+4)(s+8)}   <div style=padding-top: 35px>

A) 1s(s4)(s8) \frac{1}{s(s-4)(s-8)}
B) 1(s4)(s8) \frac{1}{(s-4)(s-8)}
C) 1s(s4)(s8) \frac{1 s}{(s-4)(s-8)}
D) 1s(s+4)(s+8) \frac{1}{s(s+4)(s+8)}
E) 1s(s+4)(s+8) \frac{1 s}{(s+4)(s+8)}
سؤال
Compute the Laplace transform of f(t) =  <strong>Compute the Laplace transform of f(t) =   sin(5t).</strong> A)   \frac{s^{2}-20 s+75}{(s-5)^{2}+25}   B)   \frac{5}{(s-5)^{2}+25}   C)   \frac{-10(s-5)}{\left((s-5)^{2}+25\right)^{2}}   D)   \frac{10(s-5)}{\left((s-5)^{2}+25\right)^{2}}   <div style=padding-top: 35px>  sin(5t).

A) s220s+75(s5)2+25 \frac{s^{2}-20 s+75}{(s-5)^{2}+25}
B) 5(s5)2+25 \frac{5}{(s-5)^{2}+25}
C) 10(s5)((s5)2+25)2 \frac{-10(s-5)}{\left((s-5)^{2}+25\right)^{2}}
D) 10(s5)((s5)2+25)2 \frac{10(s-5)}{\left((s-5)^{2}+25\right)^{2}}
سؤال
Compute the Laplace transform of  <strong>Compute the Laplace transform of  </strong> A)   s e^{-13 t}\left(\frac{1}{s^{2}}+\frac{4}{s}\right)   B)   e^{-13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)   C)   e^{-13 t}\left(\frac{2}{s^{2}}-\frac{17}{s}\right)   D)   e^{13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)   E)   s e^{13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)   <div style=padding-top: 35px>

A) se13t(1s2+4s) s e^{-13 t}\left(\frac{1}{s^{2}}+\frac{4}{s}\right)
B) e13t(1s2+17s) e^{-13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)
C) e13t(2s217s) e^{-13 t}\left(\frac{2}{s^{2}}-\frac{17}{s}\right)
D) e13t(1s2+17s) e^{13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)
E) se13t(1s2+17s) s e^{13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)
سؤال
Compute the Laplace transform of  <strong>Compute the Laplace transform of   </strong> A)   e^{-7}\left(\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}\right)   B)   e^{7 s}\left(\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}\right)   C)   \frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}   D)   e^{75}\left(\frac{2}{s^{3}}-\frac{14}{s^{2}}-\frac{49}{s}\right)   E)   e^{-7}\left(\frac{2}{s^{3}}-\frac{14}{s^{2}}-\frac{49}{s}\right)   <div style=padding-top: 35px>

A) e7(2s3+14s2+49s) e^{-7}\left(\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}\right)
B) e7s(2s3+14s2+49s) e^{7 s}\left(\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}\right)
C) 2s3+14s2+49s \frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}
D) e75(2s314s249s) e^{75}\left(\frac{2}{s^{3}}-\frac{14}{s^{2}}-\frac{49}{s}\right)
E) e7(2s314s249s) e^{-7}\left(\frac{2}{s^{3}}-\frac{14}{s^{2}}-\frac{49}{s}\right)
سؤال
Consider the function
 <strong>Consider the function   Express f(t) using unit step functions.</strong> A)   t-U_{3}(t)(t-3)   B)   t+U_{12}(t)(t-3)   C)   t-U_{3}(t)(t-12)   D)   t+U_{3}(t)(t-12)   <div style=padding-top: 35px>
Express f(t) using unit step functions.

A) tU3(t)(t3) t-U_{3}(t)(t-3)
B) t+U12(t)(t3) t+U_{12}(t)(t-3)
C) tU3(t)(t12) t-U_{3}(t)(t-12)
D) t+U3(t)(t12) t+U_{3}(t)(t-12)
سؤال
Consider the function
 <strong>Consider the function   Compute the Laplace transform of f(t).</strong> A)   \frac{1}{s^{2}}+e^{-6 s}\left(\frac{1}{s^{2}}+\frac{7}{s}\right)   B)   \frac{1}{s^{2}}-e^{-6 s}\left(\frac{1}{s^{2}}-\frac{7}{s}\right)   C)   \frac{1}{s^{2}}-e^{6 s}\left(\frac{1}{s^{2}}+\frac{7}{s}\right)   D)   \frac{1}{s^{2}}+e^{-6 s}\left(\frac{1}{s^{2}}-\frac{7}{s}\right)   <div style=padding-top: 35px>
Compute the Laplace transform of f(t).

A) 1s2+e6s(1s2+7s) \frac{1}{s^{2}}+e^{-6 s}\left(\frac{1}{s^{2}}+\frac{7}{s}\right)
B) 1s2e6s(1s27s) \frac{1}{s^{2}}-e^{-6 s}\left(\frac{1}{s^{2}}-\frac{7}{s}\right)
C) 1s2e6s(1s2+7s) \frac{1}{s^{2}}-e^{6 s}\left(\frac{1}{s^{2}}+\frac{7}{s}\right)
D) 1s2+e6s(1s27s) \frac{1}{s^{2}}+e^{-6 s}\left(\frac{1}{s^{2}}-\frac{7}{s}\right)
سؤال
Consider the function
 <strong>Consider the function   Express f(t) using unit step functions.</strong> A)   \cos (6 \pi t) U_{6}(t)   B)   \cos (6 \pi t)\left(1+U_{6}(t)\right)   C)   \cos (6 \pi t)\left(U_{6}(t)-1\right)   D)   \cos (6 \pi t)\left(1-U_{6}(t)\right)   <div style=padding-top: 35px>
Express f(t) using unit step functions.

A) cos(6πt)U6(t) \cos (6 \pi t) U_{6}(t)
B) cos(6πt)(1+U6(t)) \cos (6 \pi t)\left(1+U_{6}(t)\right)
C) cos(6πt)(U6(t)1) \cos (6 \pi t)\left(U_{6}(t)-1\right)
D) cos(6πt)(1U6(t)) \cos (6 \pi t)\left(1-U_{6}(t)\right)
سؤال
Consider the function
 <strong>Consider the function   Compute the Laplace transform of f(t).</strong> A)   \frac{2 \pi}{4 \pi^{2}+s^{2}}\left(1-e^{10 s}\right)   B)   \frac{s}{4 \pi^{2}+s^{2}}\left(1-e^{10 s}\right)   C)   \frac{2 \pi}{4 \pi^{2}+s^{2}}\left(1-e^{-10 s}\right)   D)   \frac{s}{4 \pi^{2}+s^{2}}\left(e^{-10 s}-1\right)   E)   \frac{s}{4 \pi^{2}+s^{2}}\left(e^{10 s}-1\right)   <div style=padding-top: 35px>
Compute the Laplace transform of f(t).

A) 2π4π2+s2(1e10s) \frac{2 \pi}{4 \pi^{2}+s^{2}}\left(1-e^{10 s}\right)
B) s4π2+s2(1e10s) \frac{s}{4 \pi^{2}+s^{2}}\left(1-e^{10 s}\right)
C) 2π4π2+s2(1e10s) \frac{2 \pi}{4 \pi^{2}+s^{2}}\left(1-e^{-10 s}\right)
D) s4π2+s2(e10s1) \frac{s}{4 \pi^{2}+s^{2}}\left(e^{-10 s}-1\right)
E) s4π2+s2(e10s1) \frac{s}{4 \pi^{2}+s^{2}}\left(e^{10 s}-1\right)
سؤال
Consider the function
 <strong>Consider the function   Express f(t) using unit step functions.</strong> A)   \left(U_{8.5}(t)-U_{17}(t)\right)(t-8.5)   B)   \left(U_{17}(t)-U_{8.5}(t)\right)(t-8.5)   C)   \left(U_{8.5}(t)+U_{17}(t)\right)(t-8.5)   D)   -\left(U_{85}(t)+U_{17}(t)\right)(t-8.5)   <div style=padding-top: 35px>
Express f(t) using unit step functions.

A) (U8.5(t)U17(t))(t8.5) \left(U_{8.5}(t)-U_{17}(t)\right)(t-8.5)
B) (U17(t)U8.5(t))(t8.5) \left(U_{17}(t)-U_{8.5}(t)\right)(t-8.5)
C) (U8.5(t)+U17(t))(t8.5) \left(U_{8.5}(t)+U_{17}(t)\right)(t-8.5)
D) (U85(t)+U17(t))(t8.5) -\left(U_{85}(t)+U_{17}(t)\right)(t-8.5)
سؤال
Consider the function
 <strong>Consider the function   Compute the Laplace transform of f(t).</strong> A)  \frac{e^{-8.5 s}}{s^{2}}\left(e^{-8.5 s}-1\right)+\frac{8.5 e^{-17 s}}{s}   B)  \frac{e^{-8.5 s}}{s}\left(e^{-8.5 s}-1\right)-\frac{8.5 e^{-17 s}}{s^{2}}   C)   \frac{e^{-8.5 s}}{s}\left(1-e^{-8.5 s}\right)+\frac{8.5 e^{-17 s}}{s^{2}}   D)   \frac{e^{-8.5 s}}{s^{2}}\left(1-e^{-8.5 s}\right)-\frac{8.5 e^{-17 s}}{s}   <div style=padding-top: 35px>
Compute the Laplace transform of f(t).

A) e8.5ss2(e8.5s1)+8.5e17ss \frac{e^{-8.5 s}}{s^{2}}\left(e^{-8.5 s}-1\right)+\frac{8.5 e^{-17 s}}{s}
B) e8.5ss(e8.5s1)8.5e17ss2 \frac{e^{-8.5 s}}{s}\left(e^{-8.5 s}-1\right)-\frac{8.5 e^{-17 s}}{s^{2}}
C) e8.5ss(1e8.5s)+8.5e17ss2 \frac{e^{-8.5 s}}{s}\left(1-e^{-8.5 s}\right)+\frac{8.5 e^{-17 s}}{s^{2}}
D) e8.5ss2(1e8.5s)8.5e17ss \frac{e^{-8.5 s}}{s^{2}}\left(1-e^{-8.5 s}\right)-\frac{8.5 e^{-17 s}}{s}
سؤال
Compute the inverse Laplace transform of F(s) =  <strong>Compute the inverse Laplace transform of F(s) =   .</strong> A)   e^{-2 t}\left[\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right]   B)   e^{2 t}\left(\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right)   C)   e^{2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t)+\sin (\sqrt{11} t)\right)   D)   e^{-2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t)+\sin (\sqrt{11} t)\right)   <div style=padding-top: 35px>  .

A) e2t[cos(11t)+411sin(11t)] e^{-2 t}\left[\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right]
B) e2t(cos(11t)+411sin(11t)) e^{2 t}\left(\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right)
C) e2t(411cos(11t)+sin(11t)) e^{2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t)+\sin (\sqrt{11} t)\right)
D) e2t(411cos(11t)+sin(11t)) e^{-2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t)+\sin (\sqrt{11} t)\right)
سؤال
Consider the function
 <strong>Consider the function   Compute the Laplace transform of f(t).</strong> A)   \frac{3\left(1-e^{-5 s}\right)}{s\left(1-e^{-6 s}\right)}   B)   \frac{3\left(e^{-5 s}-1\right)}{s\left(1-e^{-6 s}\right)}   C)   \frac{3\left(1-e^{-5 s}\right)}{s\left(1-e^{6 s}\right)}   D)   \frac{3\left(e^{-5 s}-1\right)}{s\left(1-e^{65}\right)}   <div style=padding-top: 35px>
Compute the Laplace transform of f(t).

A) 3(1e5s)s(1e6s) \frac{3\left(1-e^{-5 s}\right)}{s\left(1-e^{-6 s}\right)}
B) 3(e5s1)s(1e6s) \frac{3\left(e^{-5 s}-1\right)}{s\left(1-e^{-6 s}\right)}
C) 3(1e5s)s(1e6s) \frac{3\left(1-e^{-5 s}\right)}{s\left(1-e^{6 s}\right)}
D) 3(e5s1)s(1e65) \frac{3\left(e^{-5 s}-1\right)}{s\left(1-e^{65}\right)}
سؤال
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of   </strong> A)   U_{-3}(t) e^{3 t} \cos (4 t)   B)   U_{3}(t) e^{3 t} \cos (4 t)   C)   U_{3}(t) e^{-3 t} \cos (4 t)   D)   U_{3}(t) e^{3 t} \sin (4 t)   E)   U_{3}(t) e^{-3 t} \sin (4 t)   F)   U_{-3}(t) e^{-3 t} \sin (4 t)   <div style=padding-top: 35px>

A) U3(t)e3tcos(4t) U_{-3}(t) e^{3 t} \cos (4 t)
B) U3(t)e3tcos(4t) U_{3}(t) e^{3 t} \cos (4 t)
C) U3(t)e3tcos(4t) U_{3}(t) e^{-3 t} \cos (4 t)
D) U3(t)e3tsin(4t) U_{3}(t) e^{3 t} \sin (4 t)
E) U3(t)e3tsin(4t) U_{3}(t) e^{-3 t} \sin (4 t)
F) U3(t)e3tsin(4t) U_{-3}(t) e^{-3 t} \sin (4 t)
سؤال
Compute the Laplace transform of  <strong>Compute the Laplace transform of   </strong> A)   \frac{8 !}{(s+6)^{9}}   B)   \frac{8 !}{(s-6)^{9}}   C)   \frac{8 !}{s^{9}(s+6)}   D)   \frac{8 !}{s^{9}(s-6)}   <div style=padding-top: 35px>

A) 8!(s+6)9 \frac{8 !}{(s+6)^{9}}
B) 8!(s6)9 \frac{8 !}{(s-6)^{9}}
C) 8!s9(s+6) \frac{8 !}{s^{9}(s+6)}
D) 8!s9(s6) \frac{8 !}{s^{9}(s-6)}
سؤال
Compute the Laplace transform of  <strong>Compute the Laplace transform of   </strong> A)   \frac{s+4}{(s+4)^{2}+16}   B)   \frac{1}{(s+4)^{2}+16}   C)   \frac{1}{(s-4)^{2}+16}   D)   \frac{s-4}{(s-4)^{2}+16}   <div style=padding-top: 35px>

A) s+4(s+4)2+16 \frac{s+4}{(s+4)^{2}+16}
B) 1(s+4)2+16 \frac{1}{(s+4)^{2}+16}
C) 1(s4)2+16 \frac{1}{(s-4)^{2}+16}
D) s4(s4)2+16 \frac{s-4}{(s-4)^{2}+16}
سؤال
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of   .</strong> A)   e^{-4 t} t^{4}   B)   e^{-4 t} t^{3}   C)   \frac{e^{-4 t} t^{3}}{3 !}   D)   \frac{e^{4 t} t^{4}}{4 !}   E)   \frac{e^{4 t}(t+4)^{3}}{3 !}   <div style=padding-top: 35px>  .

A) e4tt4 e^{-4 t} t^{4}
B) e4tt3 e^{-4 t} t^{3}
C) e4tt33! \frac{e^{-4 t} t^{3}}{3 !}
D) e4tt44! \frac{e^{4 t} t^{4}}{4 !}
E) e4t(t+4)33! \frac{e^{4 t}(t+4)^{3}}{3 !}
سؤال
Consider the function
 <strong>Consider the function   Express f(t) using unit step functions.</strong> A)   e^{-4 t} t^{4}   B)   e^{-4 t} t^{3}   C)   \frac{e^{-4 t} t^{3}}{3 !}   D)   \frac{e^{4 t} t^{4}}{4 !}   E)   \frac{e^{4 t}(t+4)^{3}}{3 !}   <div style=padding-top: 35px>
Express f(t) using unit step functions.

A) e4tt4 e^{-4 t} t^{4}
B) e4tt3 e^{-4 t} t^{3}
C) e4tt33! \frac{e^{-4 t} t^{3}}{3 !}
D) e4tt44! \frac{e^{4 t} t^{4}}{4 !}
E) e4t(t+4)33! \frac{e^{4 t}(t+4)^{3}}{3 !}
سؤال
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of   </strong> A)   e^{-5 t}\left(\frac{3}{2 !} t^{2}-\frac{8}{3 !} t^{3}\right)   B)   e^{5 t}\left(\frac{3}{2 !} t^{2}-\frac{8}{3 !} t^{3}\right)   C)   e^{-5 t}\left(\frac{3}{2 !} t^{2}-\frac{2}{3 !} t^{3}\right)   D)   e^{5 t}\left(\frac{3}{2 !} t^{2}-\frac{2}{3 !} t^{3}\right)   <div style=padding-top: 35px>

A) e5t(32!t283!t3) e^{-5 t}\left(\frac{3}{2 !} t^{2}-\frac{8}{3 !} t^{3}\right)
B) e5t(32!t283!t3) e^{5 t}\left(\frac{3}{2 !} t^{2}-\frac{8}{3 !} t^{3}\right)
C) e5t(32!t223!t3) e^{-5 t}\left(\frac{3}{2 !} t^{2}-\frac{2}{3 !} t^{3}\right)
D) e5t(32!t223!t3) e^{5 t}\left(\frac{3}{2 !} t^{2}-\frac{2}{3 !} t^{3}\right)
سؤال
Find the Laplace transform of the solution x(t) of the following initial value problem:
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:   Wher  </strong> A)   \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)   B)   \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)   C)   \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)   D)   \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)   <div style=padding-top: 35px>
Wher
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:   Wher  </strong> A)   \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)   B)   \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)   C)   \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)   D)   \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)   <div style=padding-top: 35px>

A) 1s2+7s+5(5s+40+(e8πs1)s2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)
B) 1s2+7s+5(5s40+(e8πs1)s2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)
C) 1s2+7s+5(5s+40+(1e8πs)ss2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)
D) 1s2+7s+5(5s40+(1e8πs)ss2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)
سؤال
Find the Laplace transform of the solution x(t) of the following initial value problem
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem  </strong> A)   \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)   B)   \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{-6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)   C)   \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{-6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)   D)   \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)   E)   \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{-6 s} \frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{48}{s}\right)   F)   \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{-6 s^{2}} s^{3}+\frac{14}{s^{2}}+\frac{48}{s}\right)   <div style=padding-top: 35px>

A) 1s23s3(3s+5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)
B) 1s23s3(3s+5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{-6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)
C) 1s23s3(3s5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{-6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)
D) 1s23s3(3s5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)
E) 1s23s3(3s+5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{-6 s} \frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{48}{s}\right)
F) 1s23s3(3s5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{-6 s^{2}} s^{3}+\frac{14}{s^{2}}+\frac{48}{s}\right)
سؤال
Find the Laplace transform of the solution x(t) of the following initial value problem
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem  </strong> A)   \frac{-3}{s-5}+\frac{e^{-6 s}}{s(s-5)}   B)   \frac{-3}{s+5}+\frac{e^{-6 s}}{s(s+5)}   C)   -\frac{-3}{s-5}+\frac{e^{6 s}}{s(s-5)}   D)   \frac{-3}{s+5}+\frac{e^{6 s}}{s(s+5)}   <div style=padding-top: 35px>

A) 3s5+e6ss(s5) \frac{-3}{s-5}+\frac{e^{-6 s}}{s(s-5)}
B) 3s+5+e6ss(s+5) \frac{-3}{s+5}+\frac{e^{-6 s}}{s(s+5)}
C) 3s5+e6ss(s5) -\frac{-3}{s-5}+\frac{e^{6 s}}{s(s-5)}
D) 3s+5+e6ss(s+5) \frac{-3}{s+5}+\frac{e^{6 s}}{s(s+5)}
سؤال
Find the Laplace transform of the solution x(t) of the following initial value problem
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem  </strong> A)   \frac{e^{-9 s} \cdot 9 !}{s^{10}\left(s^{2}+9\right)}   B)   \frac{e^{9 s} \cdot 9 !}{s^{10}\left(s^{2}+9\right)}   C)   \frac{e^{9 s} \cdot 10 !}{s^{11}\left(s^{2}+9\right)}   D)   \frac{e^{-9 s} \cdot 10 !}{s^{11}\left(s^{2}+9\right)}   <div style=padding-top: 35px>

A) e9s9!s10(s2+9) \frac{e^{-9 s} \cdot 9 !}{s^{10}\left(s^{2}+9\right)}
B) e9s9!s10(s2+9) \frac{e^{9 s} \cdot 9 !}{s^{10}\left(s^{2}+9\right)}
C) e9s10!s11(s2+9) \frac{e^{9 s} \cdot 10 !}{s^{11}\left(s^{2}+9\right)}
D) e9s10!s11(s2+9) \frac{e^{-9 s} \cdot 10 !}{s^{11}\left(s^{2}+9\right)}
سؤال
You are given a spring-mass system with a mass of 1 slug, a damping constant 8 lb-sec/foot, and a spring constant of 16 lbs/foot. Suppose the mass is released from rest 1.5 feet below equilibrium, and after 5π seconds the system is given a sharp blow downward which imparts a unit impulse.
(i) Write down a second-order initial value problem whose solution x(t) is the equation of motion for this system.
(ii) Find the Laplace transform X(s) of the solution x(t) of the initial value problem you formulated in part (i).
(iii) Compute the inverse Laplace transform of your function in part (ii).
سؤال
  ________. Here, δ stands for the Dirac delta function.<div style=padding-top: 35px> ________. Here, δ stands for the Dirac delta function.
سؤال
  ________. Here, δ stands for the Dirac delta function.<div style=padding-top: 35px> ________. Here, δ stands for the Dirac delta function.
سؤال
Compute the Laplace transform of f(t) = δ(t + 3), where δ stands for the Dirac delta function.
سؤال
Find the Laplace transform of the solution of x(t) of the following initial value problem
 <strong>Find the Laplace transform of the solution of x(t) of the following initial value problem  </strong> A)   \frac{5 s+20-4 e^{5 s}}{(s+2)^{2}}   B)   \frac{5 s+20-4 e^{-5 s}}{(s+2)^{2}}   C)   \frac{25-4 e^{5 s}}{(s+2)^{2}}   D)   \frac{25-4 e^{-5 s}}{(s+2)^{2}}   <div style=padding-top: 35px>

A) 5s+204e5s(s+2)2 \frac{5 s+20-4 e^{5 s}}{(s+2)^{2}}
B) 5s+204e5s(s+2)2 \frac{5 s+20-4 e^{-5 s}}{(s+2)^{2}}
C) 254e5s(s+2)2 \frac{25-4 e^{5 s}}{(s+2)^{2}}
D) 254e5s(s+2)2 \frac{25-4 e^{-5 s}}{(s+2)^{2}}
سؤال
Consider the following initial value problem
Consider the following initial value problem   (i) Find the Laplace transform X(s) of the solution x(t) of this initial value problem. (ii) Compute the inverse Laplace transform of your function in part (i).<div style=padding-top: 35px>
(i) Find the Laplace transform X(s) of the solution x(t) of this initial value problem.
(ii) Compute the inverse Laplace transform of your function in part (i).
سؤال
Compute <strong>Compute   </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A)<strong>Compute   </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Compute   </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Compute   </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Compute   </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
سؤال
Which of the following are properties of the convolution integral, for all continuous functions f, g, and h? Select all that apply.

A) f(gh)=(fg)h f *\left(g^{*} h\right)=(f * g)^{*} h
B) ff0 f^{*} f \geq 0
C) f1=f f^{*} 1=f
D) fg=gf f * g=g^{*} f
E) f(g+h)=fg+fh f *(g+h)=f * g+f * h
سؤال
Compute the Laplace transform of f(t) =  <strong>Compute the Laplace transform of f(t) =   .</strong> A)   \frac{1}{s}-\frac{1}{s-6}   B)   \frac{1}{s}+\frac{1}{(s+6)^{2}}   C)   \frac{1}{s}+\frac{1}{(s-6)^{2}}   D)   \frac{1}{s(s-6)^{2}}   E)   \frac{1}{s(s+6)^{2}}   F)   -\frac{1}{s(s-6)}   <div style=padding-top: 35px>  .

A) 1s1s6 \frac{1}{s}-\frac{1}{s-6}
B) 1s+1(s+6)2 \frac{1}{s}+\frac{1}{(s+6)^{2}}
C) 1s+1(s6)2 \frac{1}{s}+\frac{1}{(s-6)^{2}}
D) 1s(s6)2 \frac{1}{s(s-6)^{2}}
E) 1s(s+6)2 \frac{1}{s(s+6)^{2}}
F) 1s(s6) -\frac{1}{s(s-6)}
سؤال
Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.
 <strong>Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.   Find the Laplace transform X(s) of the solution x(t) of this initial value problem. Here, F(s) stands for the Laplace transform of f(t).</strong> A)   \frac{1.6 s+1.4+F(s)}{s^{2}+6}   B)   \frac{-1.6 s-1.4+F(s)}{s^{2}+6}   C)   \frac{1.6 s-1.4+F(s)}{s^{2}+6}   D)   \frac{1.4-1.6 s+F(s)}{s^{2}+6}   <div style=padding-top: 35px>
Find the Laplace transform X(s) of the solution x(t) of this initial value problem. Here, F(s) stands for the Laplace transform of f(t).

A) 1.6s+1.4+F(s)s2+6 \frac{1.6 s+1.4+F(s)}{s^{2}+6}
B) 1.6s1.4+F(s)s2+6 \frac{-1.6 s-1.4+F(s)}{s^{2}+6}
C) 1.6s1.4+F(s)s2+6 \frac{1.6 s-1.4+F(s)}{s^{2}+6}
D) 1.41.6s+F(s)s2+6 \frac{1.4-1.6 s+F(s)}{s^{2}+6}
سؤال
Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.
Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.   Find the equation of motion x(t). (Hint: You will need to use a convolution integral.)<div style=padding-top: 35px>
Find the equation of motion x(t). (Hint: You will need to use a convolution integral.)
سؤال
Find the function f(t) that satisfies the integral equationf(t)
Find the function f(t) that satisfies the integral equationf(t)  <div style=padding-top: 35px>
سؤال
Compute Compute   * t.<div style=padding-top: 35px> * t.
سؤال
Use the convolution theorem to compute the inverse Laplace transform of  <strong>Use the convolution theorem to compute the inverse Laplace transform of  </strong> A)   \frac{t^{4}}{4 !} * e^{8 t}   B)   \frac{t^{5}}{5 !} * e^{8 t}   C)   \frac{t^{4}}{4 !} * e^{-8 t}   D)   \frac{t^{5}}{5 !} * e^{-8 t}   E)   t^{5} * e^{8 t}   F)   t^{5} * e^{-8 t}   <div style=padding-top: 35px>

A) t44!e8t \frac{t^{4}}{4 !} * e^{8 t}
B) t55!e8t \frac{t^{5}}{5 !} * e^{8 t}
C) t44!e8t \frac{t^{4}}{4 !} * e^{-8 t}
D) t55!e8t \frac{t^{5}}{5 !} * e^{-8 t}
E) t5e8t t^{5} * e^{8 t}
F) t5e8t t^{5} * e^{-8 t}
سؤال
Find the function f(t) that satisfies the integral equationf(t)
Find the function f(t) that satisfies the integral equationf(t)  <div style=padding-top: 35px>
سؤال
Use the convolution theorem to compute the inverse Laplace transform of
<strong>Use the convolution theorem to compute the inverse Laplace transform of   Select all that apply.</strong> A) 28 sin(4t) * cos(7t) B) 7 sin(4t) * cos(7t) C) 4 sin(4t) * cos(7t) D) 4 sin(7t) * cos(4t) E) 7 sin(7t) * cos(4t) <div style=padding-top: 35px> Select all that apply.

A) 28 sin(4t) * cos(7t)
B) 7 sin(4t) * cos(7t)
C) 4 sin(4t) * cos(7t)
D) 4 sin(7t) * cos(4t)
E) 7 sin(7t) * cos(4t)
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/57
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 6: The Laplace Transform
1
Consider the following function:
F(t) =  <strong>Consider the following function: F(t) =   Which of these properties does f satisfy? Select all that apply.</strong> A) f is piecewise continuous on [0,  \infty ). B) f is of exponential order. C) f is continuous on [0,  \infty ). D)   diverges. E) The Laplace transform of f exists.
Which of these properties does f satisfy? Select all that apply.

A) f is piecewise continuous on [0, \infty ).
B) f is of exponential order.
C) f is continuous on [0, \infty ).
D)  <strong>Consider the following function: F(t) =   Which of these properties does f satisfy? Select all that apply.</strong> A) f is piecewise continuous on [0,  \infty ). B) f is of exponential order. C) f is continuous on [0,  \infty ). D)   diverges. E) The Laplace transform of f exists.  diverges.
E) The Laplace transform of f exists.
f is piecewise continuous on [0, \infty ).
f is of exponential order.
The Laplace transform of f exists.
2
Consider the following function:
F(t) =  <strong>Consider the following function: F(t) =   Which of the following statements is true?</strong> A) The Laplace transform of f does not exist because f is not of exponential order. B)   converges. C) f is continuous on [0,  \infty ) D) f is piecewise continuous on [0,  \infty ), but the Laplace transform of f does not exist.
Which of the following statements is true?

A) The Laplace transform of f does not exist because f is not of exponential order.
B)  <strong>Consider the following function: F(t) =   Which of the following statements is true?</strong> A) The Laplace transform of f does not exist because f is not of exponential order. B)   converges. C) f is continuous on [0,  \infty ) D) f is piecewise continuous on [0,  \infty ), but the Laplace transform of f does not exist.  converges.
C) f is continuous on [0, \infty )
D) f is piecewise continuous on [0, \infty ), but the Laplace transform of f does not exist.
  converges. converges.
3
Compute the Laplace transform of f:
F(t) = <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0

A) <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 , s > 0
B) <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 , s > 0
C) <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 , s > 0
D) <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   , s > 0 B)   , s > 0 C)   , s > 0 D)   , s > 0 , s > 0
  , s > 0 , s > 0
4
Compute the Laplace transform of f:
F(t) =  <strong>Compute the Laplace transform of f: F(t) =  </strong> A)   \frac{12+12 e^{-7 s}}{s}+\frac{33 e^{-7 s}}{s}+3 e^{-7 s}\left(\frac{1+7 s}{s^{2}}\right)   B)   \frac{12-12 e^{-7 s}}{s}+\frac{33 e^{-7 s}}{s}-3 e^{-7 s}\left(\frac{1+7 s}{s^{2}}\right)   C)   \frac{12-12 e^{-7 s}}{s^{2}}+\frac{33 e^{-7 s}}{s^{2}}-3 e^{-7 s}\left(\frac{1+7 s}{s}\right)   D)   \frac{12-12 e^{-7 s}}{s^{2}}-\frac{33 e^{-7 s}}{s^{2}}+3 e^{-7 s}\left(\frac{1+7 s}{s}\right)

A) 12+12e7ss+33e7ss+3e7s(1+7ss2) \frac{12+12 e^{-7 s}}{s}+\frac{33 e^{-7 s}}{s}+3 e^{-7 s}\left(\frac{1+7 s}{s^{2}}\right)
B) 1212e7ss+33e7ss3e7s(1+7ss2) \frac{12-12 e^{-7 s}}{s}+\frac{33 e^{-7 s}}{s}-3 e^{-7 s}\left(\frac{1+7 s}{s^{2}}\right)
C) 1212e7ss2+33e7ss23e7s(1+7ss) \frac{12-12 e^{-7 s}}{s^{2}}+\frac{33 e^{-7 s}}{s^{2}}-3 e^{-7 s}\left(\frac{1+7 s}{s}\right)
D) 1212e7ss233e7ss2+3e7s(1+7ss) \frac{12-12 e^{-7 s}}{s^{2}}-\frac{33 e^{-7 s}}{s^{2}}+3 e^{-7 s}\left(\frac{1+7 s}{s}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
5
The integral The integral   converges. converges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
6
Which of these statements is true?

A) 0t4e4tdt \int_{0}^{\infty} t^{-4} e^{4 t} d t converges because e4tt4e4t \frac{e^{4 t}}{t^{4}} \leq e^{4 t} , for all t1 t \geq 1 and 0e4tdt \int_{0}^{\infty} e^{4 t} d t converges.
B) 0t2e5tdt \int_{0}^{\infty} t^{2} e^{-5 t} d t diverges because t2e5tt2 t^{2} e^{-5 t} \geq t^{2} , for all t1 t \geq 1 and 0t2dt \int_{0}^{\infty} t^{2} d t converges.
C) 0A4e2tdt \int_{0}^{\infty} A^{4} e^{-2 t} d t converges because tte2t t^{t} e^{-2 t} is of exponential order.
D) 0t4e2tdt \int_{0}^{\infty} t^{-4} e^{2 t} d t converges because t4e2t t^{-4} e^{2 t} is of exponential order.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
7
Compute the Laplace transform of f(t) = 4.2.

A) 18s236+4ss236,s>6 \frac{18}{s^{2}-36}+\frac{-4 s}{s^{2}-36}, s>6
B) 3ss236+4s236,s>6 \frac{3 s}{s^{2}-36}+\frac{-4}{s^{2}-36}, s>6
C) 18s2+36+4ss2+36,s>0 \frac{18}{s^{2}+36}+\frac{-4 s}{s^{2}+36}, s>0
D) 3ss2+36+4s2+36,s>0 \frac{3 s}{s^{2}+36}+\frac{-4}{s^{2}+36}, s>0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
8
Compute the Laplace transform of f(t) = 6t - 5 <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 .

A) <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 + <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 , s > 3
B) <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 + <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 , s > -3
C) <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 + <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 , s > 3
D) <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 + <strong>Compute the Laplace transform of f(t) = 6t - 5   .</strong> A)   +   , s > 3 B)   +   , s > -3 C)   +   , s > 3 D)   +   , s > -3 , s > -3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
9
Compute the Laplace transform of f(t) = 3 sin(6t) - 4 cos(6t).

A) 18s236+4ss236,s>6 \frac{18}{s^{2}-36}+\frac{-4 s}{s^{2}-36}, s>6
B) 3ss236+4s236,s>6 \frac{3 s}{s^{2}-36}+\frac{-4}{s^{2}-36}, s>6
C) 18s2+36+4ss2+36,s>0 \frac{18}{s^{2}+36}+\frac{-4 s}{s^{2}+36}, s>0
D) 3ss2+36+4s2+36,s>0 \frac{3 s}{s^{2}+36}+\frac{-4}{s^{2}+36}, s>0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
10
Compute the Laplace transform of f(t) = t cos(10t).

A) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)
B) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)
C) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)
D) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)
E) <strong>Compute the Laplace transform of f(t) = t cos(10t).</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
11
Compute the Laplace transform of f(t) = sin(2 π\pi t)cos(2 π\pi t).

A)  <strong>Compute the Laplace transform of f(t) = sin(2  \pi t)cos(2  \pi t).</strong> A)   B)   C)   D)
B)  <strong>Compute the Laplace transform of f(t) = sin(2  \pi t)cos(2  \pi t).</strong> A)   B)   C)   D)
C)  <strong>Compute the Laplace transform of f(t) = sin(2  \pi t)cos(2  \pi t).</strong> A)   B)   C)   D)
D)  <strong>Compute the Laplace transform of f(t) = sin(2  \pi t)cos(2  \pi t).</strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
12
Compute the Laplace transform of f(t) = 3 + 10  <strong>Compute the Laplace transform of f(t) = 3 + 10   .</strong> A)   \frac{3}{s^{2}}+\frac{10 \cdot 8 !}{s^{9}}, s>0   B)   \frac{3}{s}+\frac{10 \cdot 8 !}{s^{9}}, s>0   C)   \frac{3}{s}+\frac{10 \cdot 8}{s^{9}}, s>0   D)   \frac{3}{s^{2}}+\frac{10 \cdot 9 !}{s^{8}}, s>0    .

A) 3s2+108!s9,s>0 \frac{3}{s^{2}}+\frac{10 \cdot 8 !}{s^{9}}, s>0
B) 3s+108!s9,s>0 \frac{3}{s}+\frac{10 \cdot 8 !}{s^{9}}, s>0
C) 3s+108s9,s>0 \frac{3}{s}+\frac{10 \cdot 8}{s^{9}}, s>0
D) 3s2+109!s8,s>0 \frac{3}{s^{2}}+\frac{10 \cdot 9 !}{s^{8}}, s>0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
13
Compute the inverse Laplace transform of F(s) =  <strong>Compute the inverse Laplace transform of F(s) =   +   .</strong> A)   \sqrt{17} t^{3}+\frac{9}{5} \sin (5 t)   B)   \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \cos (\sqrt{5} t)   C)   \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \sin (\sqrt{5} t)   D)   \frac{\sqrt{17}}{4 !} t+\frac{9}{\sqrt{5}} \cos (\sqrt{5})   E)   \sqrt{17} t^{3}+\frac{9}{5} \cos (5 t)    +  <strong>Compute the inverse Laplace transform of F(s) =   +   .</strong> A)   \sqrt{17} t^{3}+\frac{9}{5} \sin (5 t)   B)   \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \cos (\sqrt{5} t)   C)   \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \sin (\sqrt{5} t)   D)   \frac{\sqrt{17}}{4 !} t+\frac{9}{\sqrt{5}} \cos (\sqrt{5})   E)   \sqrt{17} t^{3}+\frac{9}{5} \cos (5 t)    .

A) 17t3+95sin(5t) \sqrt{17} t^{3}+\frac{9}{5} \sin (5 t)
B) 173!t3+95cos(5t) \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \cos (\sqrt{5} t)
C) 173!t3+95sin(5t) \frac{\sqrt{17}}{3 !} t^{3}+\frac{9}{\sqrt{5}} \sin (\sqrt{5} t)
D) 174!t+95cos(5) \frac{\sqrt{17}}{4 !} t+\frac{9}{\sqrt{5}} \cos (\sqrt{5})
E) 17t3+95cos(5t) \sqrt{17} t^{3}+\frac{9}{5} \cos (5 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
14
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of   </strong> A)   \frac{1}{5} t^{2}-\frac{1}{25} \cos (5 t)   B)   \frac{1}{5} t-\frac{1}{25} \sin (5 t)   C)   \frac{1}{5} t^{2}-\frac{1}{25} \sin (5 t)   D)   \frac{1}{5} t-\frac{1}{5 \sqrt{5}} \cos (\sqrt{5} t)   E)   \frac{1}{5} t-\frac{1}{5 \sqrt{5}} \sin (\sqrt{5} t)

A) 15t2125cos(5t) \frac{1}{5} t^{2}-\frac{1}{25} \cos (5 t)
B) 15t125sin(5t) \frac{1}{5} t-\frac{1}{25} \sin (5 t)
C) 15t2125sin(5t) \frac{1}{5} t^{2}-\frac{1}{25} \sin (5 t)
D) 15t155cos(5t) \frac{1}{5} t-\frac{1}{5 \sqrt{5}} \cos (\sqrt{5} t)
E) 15t155sin(5t) \frac{1}{5} t-\frac{1}{5 \sqrt{5}} \sin (\sqrt{5} t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
15
Compute the inverse Laplace transform of F(s) =  <strong>Compute the inverse Laplace transform of F(s) =   .</strong> A)   \sin (81 t)+\frac{1}{81} \cos (9 t)   B)   \sin (9 t)+\frac{1}{9} \cos (9 t)   C)   \cos (9 t)+\frac{1}{9} \sin (9 t)   D)   \cos (81 t)+\frac{1}{81} \sin (9 t)    .

A) sin(81t)+181cos(9t) \sin (81 t)+\frac{1}{81} \cos (9 t)
B) sin(9t)+19cos(9t) \sin (9 t)+\frac{1}{9} \cos (9 t)
C) cos(9t)+19sin(9t) \cos (9 t)+\frac{1}{9} \sin (9 t)
D) cos(81t)+181sin(9t) \cos (81 t)+\frac{1}{81} \sin (9 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
16
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of  </strong> A)   e^{3 t}-e^{2 t}   B)   e^{2 t}+e^{3 t}   C)   e^{2 t}-e^{3 t}   D)   e^{-3 t}+e^{-2 t}   E)   e^{-2 t}+e^{-3 t}   F)   e^{-2 t}-e^{-3 t}

A) e3te2t e^{3 t}-e^{2 t}
B) e2t+e3t e^{2 t}+e^{3 t}
C) e2te3t e^{2 t}-e^{3 t}
D) e3t+e2t e^{-3 t}+e^{-2 t}
E) e2t+e3t e^{-2 t}+e^{-3 t}
F) e2te3t e^{-2 t}-e^{-3 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the Laplace transform of the solution x(t) of the following initial value problem:  <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:   </strong> A)   \frac{4 s^{6}+27 s^{5}+8 \cdot 4 !}{s^{5}\left(s^{2}+7 s+3\right)}   B)   \frac{27 s^{5}-4 s^{6}+8 \cdot 4 !}{s^{5}\left(s^{2}+7 s+3\right)}   C)   \frac{27 s^{5}-4 s^{6}+8 \cdot 4 !}{s^{4}\left(s^{2}+7 s+3\right)}   D)   \frac{4 s^{6}-27 s^{5}+8 \cdot 4 !}{s^{4}\left(s^{2}+7 s+3\right)}

A) 4s6+27s5+84!s5(s2+7s+3) \frac{4 s^{6}+27 s^{5}+8 \cdot 4 !}{s^{5}\left(s^{2}+7 s+3\right)}
B) 27s54s6+84!s5(s2+7s+3) \frac{27 s^{5}-4 s^{6}+8 \cdot 4 !}{s^{5}\left(s^{2}+7 s+3\right)}
C) 27s54s6+84!s4(s2+7s+3) \frac{27 s^{5}-4 s^{6}+8 \cdot 4 !}{s^{4}\left(s^{2}+7 s+3\right)}
D) 4s627s5+84!s4(s2+7s+3) \frac{4 s^{6}-27 s^{5}+8 \cdot 4 !}{s^{4}\left(s^{2}+7 s+3\right)}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the Laplace transform of the solution x(t) of the following initial value problem:  <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:   </strong> A)   \frac{3 s^{2}-8 s-12}{s^{3}+3 s^{2}+4 s+4}   B)   \frac{3 s^{2}-8 s-12}{s^{3}-3 s^{2}-4 s-4}   C)   \frac{3 s^{2}+8 s+12}{s^{3}+3 s^{2}+4 s+4}   D)   \frac{3 s^{2}+8 s+12}{s^{3}-3 s^{2}-4 s-4}

A) 3s28s12s3+3s2+4s+4 \frac{3 s^{2}-8 s-12}{s^{3}+3 s^{2}+4 s+4}
B) 3s28s12s33s24s4 \frac{3 s^{2}-8 s-12}{s^{3}-3 s^{2}-4 s-4}
C) 3s2+8s+12s3+3s2+4s+4 \frac{3 s^{2}+8 s+12}{s^{3}+3 s^{2}+4 s+4}
D) 3s2+8s+12s33s24s4 \frac{3 s^{2}+8 s+12}{s^{3}-3 s^{2}-4 s-4}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
19
Consider the following initial value problem:
Consider the following initial value problem:   (ii) Find the inverse Laplace transform of the answer in part (i) to find the solution x(t) of the initial value problem.
(ii) Find the inverse Laplace transform of the answer in part (i) to find the solution x(t) of the initial value problem.
Consider the following initial value problem:   (ii) Find the inverse Laplace transform of the answer in part (i) to find the solution x(t) of the initial value problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the Laplace transform of the solution x(t) of the following initial value problem:
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:  </strong> A)   \frac{1}{s(s-4)(s-8)}   B)   \frac{1}{(s-4)(s-8)}   C)   \frac{1 s}{(s-4)(s-8)}   D)   \frac{1}{s(s+4)(s+8)}   E)   \frac{1 s}{(s+4)(s+8)}

A) 1s(s4)(s8) \frac{1}{s(s-4)(s-8)}
B) 1(s4)(s8) \frac{1}{(s-4)(s-8)}
C) 1s(s4)(s8) \frac{1 s}{(s-4)(s-8)}
D) 1s(s+4)(s+8) \frac{1}{s(s+4)(s+8)}
E) 1s(s+4)(s+8) \frac{1 s}{(s+4)(s+8)}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
21
Compute the Laplace transform of f(t) =  <strong>Compute the Laplace transform of f(t) =   sin(5t).</strong> A)   \frac{s^{2}-20 s+75}{(s-5)^{2}+25}   B)   \frac{5}{(s-5)^{2}+25}   C)   \frac{-10(s-5)}{\left((s-5)^{2}+25\right)^{2}}   D)   \frac{10(s-5)}{\left((s-5)^{2}+25\right)^{2}}    sin(5t).

A) s220s+75(s5)2+25 \frac{s^{2}-20 s+75}{(s-5)^{2}+25}
B) 5(s5)2+25 \frac{5}{(s-5)^{2}+25}
C) 10(s5)((s5)2+25)2 \frac{-10(s-5)}{\left((s-5)^{2}+25\right)^{2}}
D) 10(s5)((s5)2+25)2 \frac{10(s-5)}{\left((s-5)^{2}+25\right)^{2}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
22
Compute the Laplace transform of  <strong>Compute the Laplace transform of  </strong> A)   s e^{-13 t}\left(\frac{1}{s^{2}}+\frac{4}{s}\right)   B)   e^{-13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)   C)   e^{-13 t}\left(\frac{2}{s^{2}}-\frac{17}{s}\right)   D)   e^{13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)   E)   s e^{13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)

A) se13t(1s2+4s) s e^{-13 t}\left(\frac{1}{s^{2}}+\frac{4}{s}\right)
B) e13t(1s2+17s) e^{-13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)
C) e13t(2s217s) e^{-13 t}\left(\frac{2}{s^{2}}-\frac{17}{s}\right)
D) e13t(1s2+17s) e^{13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)
E) se13t(1s2+17s) s e^{13 t}\left(\frac{1}{s^{2}}+\frac{17}{s}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
23
Compute the Laplace transform of  <strong>Compute the Laplace transform of   </strong> A)   e^{-7}\left(\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}\right)   B)   e^{7 s}\left(\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}\right)   C)   \frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}   D)   e^{75}\left(\frac{2}{s^{3}}-\frac{14}{s^{2}}-\frac{49}{s}\right)   E)   e^{-7}\left(\frac{2}{s^{3}}-\frac{14}{s^{2}}-\frac{49}{s}\right)

A) e7(2s3+14s2+49s) e^{-7}\left(\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}\right)
B) e7s(2s3+14s2+49s) e^{7 s}\left(\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}\right)
C) 2s3+14s2+49s \frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{49}{s}
D) e75(2s314s249s) e^{75}\left(\frac{2}{s^{3}}-\frac{14}{s^{2}}-\frac{49}{s}\right)
E) e7(2s314s249s) e^{-7}\left(\frac{2}{s^{3}}-\frac{14}{s^{2}}-\frac{49}{s}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
24
Consider the function
 <strong>Consider the function   Express f(t) using unit step functions.</strong> A)   t-U_{3}(t)(t-3)   B)   t+U_{12}(t)(t-3)   C)   t-U_{3}(t)(t-12)   D)   t+U_{3}(t)(t-12)
Express f(t) using unit step functions.

A) tU3(t)(t3) t-U_{3}(t)(t-3)
B) t+U12(t)(t3) t+U_{12}(t)(t-3)
C) tU3(t)(t12) t-U_{3}(t)(t-12)
D) t+U3(t)(t12) t+U_{3}(t)(t-12)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
25
Consider the function
 <strong>Consider the function   Compute the Laplace transform of f(t).</strong> A)   \frac{1}{s^{2}}+e^{-6 s}\left(\frac{1}{s^{2}}+\frac{7}{s}\right)   B)   \frac{1}{s^{2}}-e^{-6 s}\left(\frac{1}{s^{2}}-\frac{7}{s}\right)   C)   \frac{1}{s^{2}}-e^{6 s}\left(\frac{1}{s^{2}}+\frac{7}{s}\right)   D)   \frac{1}{s^{2}}+e^{-6 s}\left(\frac{1}{s^{2}}-\frac{7}{s}\right)
Compute the Laplace transform of f(t).

A) 1s2+e6s(1s2+7s) \frac{1}{s^{2}}+e^{-6 s}\left(\frac{1}{s^{2}}+\frac{7}{s}\right)
B) 1s2e6s(1s27s) \frac{1}{s^{2}}-e^{-6 s}\left(\frac{1}{s^{2}}-\frac{7}{s}\right)
C) 1s2e6s(1s2+7s) \frac{1}{s^{2}}-e^{6 s}\left(\frac{1}{s^{2}}+\frac{7}{s}\right)
D) 1s2+e6s(1s27s) \frac{1}{s^{2}}+e^{-6 s}\left(\frac{1}{s^{2}}-\frac{7}{s}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
26
Consider the function
 <strong>Consider the function   Express f(t) using unit step functions.</strong> A)   \cos (6 \pi t) U_{6}(t)   B)   \cos (6 \pi t)\left(1+U_{6}(t)\right)   C)   \cos (6 \pi t)\left(U_{6}(t)-1\right)   D)   \cos (6 \pi t)\left(1-U_{6}(t)\right)
Express f(t) using unit step functions.

A) cos(6πt)U6(t) \cos (6 \pi t) U_{6}(t)
B) cos(6πt)(1+U6(t)) \cos (6 \pi t)\left(1+U_{6}(t)\right)
C) cos(6πt)(U6(t)1) \cos (6 \pi t)\left(U_{6}(t)-1\right)
D) cos(6πt)(1U6(t)) \cos (6 \pi t)\left(1-U_{6}(t)\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
27
Consider the function
 <strong>Consider the function   Compute the Laplace transform of f(t).</strong> A)   \frac{2 \pi}{4 \pi^{2}+s^{2}}\left(1-e^{10 s}\right)   B)   \frac{s}{4 \pi^{2}+s^{2}}\left(1-e^{10 s}\right)   C)   \frac{2 \pi}{4 \pi^{2}+s^{2}}\left(1-e^{-10 s}\right)   D)   \frac{s}{4 \pi^{2}+s^{2}}\left(e^{-10 s}-1\right)   E)   \frac{s}{4 \pi^{2}+s^{2}}\left(e^{10 s}-1\right)
Compute the Laplace transform of f(t).

A) 2π4π2+s2(1e10s) \frac{2 \pi}{4 \pi^{2}+s^{2}}\left(1-e^{10 s}\right)
B) s4π2+s2(1e10s) \frac{s}{4 \pi^{2}+s^{2}}\left(1-e^{10 s}\right)
C) 2π4π2+s2(1e10s) \frac{2 \pi}{4 \pi^{2}+s^{2}}\left(1-e^{-10 s}\right)
D) s4π2+s2(e10s1) \frac{s}{4 \pi^{2}+s^{2}}\left(e^{-10 s}-1\right)
E) s4π2+s2(e10s1) \frac{s}{4 \pi^{2}+s^{2}}\left(e^{10 s}-1\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
28
Consider the function
 <strong>Consider the function   Express f(t) using unit step functions.</strong> A)   \left(U_{8.5}(t)-U_{17}(t)\right)(t-8.5)   B)   \left(U_{17}(t)-U_{8.5}(t)\right)(t-8.5)   C)   \left(U_{8.5}(t)+U_{17}(t)\right)(t-8.5)   D)   -\left(U_{85}(t)+U_{17}(t)\right)(t-8.5)
Express f(t) using unit step functions.

A) (U8.5(t)U17(t))(t8.5) \left(U_{8.5}(t)-U_{17}(t)\right)(t-8.5)
B) (U17(t)U8.5(t))(t8.5) \left(U_{17}(t)-U_{8.5}(t)\right)(t-8.5)
C) (U8.5(t)+U17(t))(t8.5) \left(U_{8.5}(t)+U_{17}(t)\right)(t-8.5)
D) (U85(t)+U17(t))(t8.5) -\left(U_{85}(t)+U_{17}(t)\right)(t-8.5)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
29
Consider the function
 <strong>Consider the function   Compute the Laplace transform of f(t).</strong> A)  \frac{e^{-8.5 s}}{s^{2}}\left(e^{-8.5 s}-1\right)+\frac{8.5 e^{-17 s}}{s}   B)  \frac{e^{-8.5 s}}{s}\left(e^{-8.5 s}-1\right)-\frac{8.5 e^{-17 s}}{s^{2}}   C)   \frac{e^{-8.5 s}}{s}\left(1-e^{-8.5 s}\right)+\frac{8.5 e^{-17 s}}{s^{2}}   D)   \frac{e^{-8.5 s}}{s^{2}}\left(1-e^{-8.5 s}\right)-\frac{8.5 e^{-17 s}}{s}
Compute the Laplace transform of f(t).

A) e8.5ss2(e8.5s1)+8.5e17ss \frac{e^{-8.5 s}}{s^{2}}\left(e^{-8.5 s}-1\right)+\frac{8.5 e^{-17 s}}{s}
B) e8.5ss(e8.5s1)8.5e17ss2 \frac{e^{-8.5 s}}{s}\left(e^{-8.5 s}-1\right)-\frac{8.5 e^{-17 s}}{s^{2}}
C) e8.5ss(1e8.5s)+8.5e17ss2 \frac{e^{-8.5 s}}{s}\left(1-e^{-8.5 s}\right)+\frac{8.5 e^{-17 s}}{s^{2}}
D) e8.5ss2(1e8.5s)8.5e17ss \frac{e^{-8.5 s}}{s^{2}}\left(1-e^{-8.5 s}\right)-\frac{8.5 e^{-17 s}}{s}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
30
Compute the inverse Laplace transform of F(s) =  <strong>Compute the inverse Laplace transform of F(s) =   .</strong> A)   e^{-2 t}\left[\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right]   B)   e^{2 t}\left(\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right)   C)   e^{2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t)+\sin (\sqrt{11} t)\right)   D)   e^{-2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t)+\sin (\sqrt{11} t)\right)    .

A) e2t[cos(11t)+411sin(11t)] e^{-2 t}\left[\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right]
B) e2t(cos(11t)+411sin(11t)) e^{2 t}\left(\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right)
C) e2t(411cos(11t)+sin(11t)) e^{2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t)+\sin (\sqrt{11} t)\right)
D) e2t(411cos(11t)+sin(11t)) e^{-2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t)+\sin (\sqrt{11} t)\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
31
Consider the function
 <strong>Consider the function   Compute the Laplace transform of f(t).</strong> A)   \frac{3\left(1-e^{-5 s}\right)}{s\left(1-e^{-6 s}\right)}   B)   \frac{3\left(e^{-5 s}-1\right)}{s\left(1-e^{-6 s}\right)}   C)   \frac{3\left(1-e^{-5 s}\right)}{s\left(1-e^{6 s}\right)}   D)   \frac{3\left(e^{-5 s}-1\right)}{s\left(1-e^{65}\right)}
Compute the Laplace transform of f(t).

A) 3(1e5s)s(1e6s) \frac{3\left(1-e^{-5 s}\right)}{s\left(1-e^{-6 s}\right)}
B) 3(e5s1)s(1e6s) \frac{3\left(e^{-5 s}-1\right)}{s\left(1-e^{-6 s}\right)}
C) 3(1e5s)s(1e6s) \frac{3\left(1-e^{-5 s}\right)}{s\left(1-e^{6 s}\right)}
D) 3(e5s1)s(1e65) \frac{3\left(e^{-5 s}-1\right)}{s\left(1-e^{65}\right)}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
32
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of   </strong> A)   U_{-3}(t) e^{3 t} \cos (4 t)   B)   U_{3}(t) e^{3 t} \cos (4 t)   C)   U_{3}(t) e^{-3 t} \cos (4 t)   D)   U_{3}(t) e^{3 t} \sin (4 t)   E)   U_{3}(t) e^{-3 t} \sin (4 t)   F)   U_{-3}(t) e^{-3 t} \sin (4 t)

A) U3(t)e3tcos(4t) U_{-3}(t) e^{3 t} \cos (4 t)
B) U3(t)e3tcos(4t) U_{3}(t) e^{3 t} \cos (4 t)
C) U3(t)e3tcos(4t) U_{3}(t) e^{-3 t} \cos (4 t)
D) U3(t)e3tsin(4t) U_{3}(t) e^{3 t} \sin (4 t)
E) U3(t)e3tsin(4t) U_{3}(t) e^{-3 t} \sin (4 t)
F) U3(t)e3tsin(4t) U_{-3}(t) e^{-3 t} \sin (4 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
33
Compute the Laplace transform of  <strong>Compute the Laplace transform of   </strong> A)   \frac{8 !}{(s+6)^{9}}   B)   \frac{8 !}{(s-6)^{9}}   C)   \frac{8 !}{s^{9}(s+6)}   D)   \frac{8 !}{s^{9}(s-6)}

A) 8!(s+6)9 \frac{8 !}{(s+6)^{9}}
B) 8!(s6)9 \frac{8 !}{(s-6)^{9}}
C) 8!s9(s+6) \frac{8 !}{s^{9}(s+6)}
D) 8!s9(s6) \frac{8 !}{s^{9}(s-6)}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
34
Compute the Laplace transform of  <strong>Compute the Laplace transform of   </strong> A)   \frac{s+4}{(s+4)^{2}+16}   B)   \frac{1}{(s+4)^{2}+16}   C)   \frac{1}{(s-4)^{2}+16}   D)   \frac{s-4}{(s-4)^{2}+16}

A) s+4(s+4)2+16 \frac{s+4}{(s+4)^{2}+16}
B) 1(s+4)2+16 \frac{1}{(s+4)^{2}+16}
C) 1(s4)2+16 \frac{1}{(s-4)^{2}+16}
D) s4(s4)2+16 \frac{s-4}{(s-4)^{2}+16}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
35
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of   .</strong> A)   e^{-4 t} t^{4}   B)   e^{-4 t} t^{3}   C)   \frac{e^{-4 t} t^{3}}{3 !}   D)   \frac{e^{4 t} t^{4}}{4 !}   E)   \frac{e^{4 t}(t+4)^{3}}{3 !}    .

A) e4tt4 e^{-4 t} t^{4}
B) e4tt3 e^{-4 t} t^{3}
C) e4tt33! \frac{e^{-4 t} t^{3}}{3 !}
D) e4tt44! \frac{e^{4 t} t^{4}}{4 !}
E) e4t(t+4)33! \frac{e^{4 t}(t+4)^{3}}{3 !}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
36
Consider the function
 <strong>Consider the function   Express f(t) using unit step functions.</strong> A)   e^{-4 t} t^{4}   B)   e^{-4 t} t^{3}   C)   \frac{e^{-4 t} t^{3}}{3 !}   D)   \frac{e^{4 t} t^{4}}{4 !}   E)   \frac{e^{4 t}(t+4)^{3}}{3 !}
Express f(t) using unit step functions.

A) e4tt4 e^{-4 t} t^{4}
B) e4tt3 e^{-4 t} t^{3}
C) e4tt33! \frac{e^{-4 t} t^{3}}{3 !}
D) e4tt44! \frac{e^{4 t} t^{4}}{4 !}
E) e4t(t+4)33! \frac{e^{4 t}(t+4)^{3}}{3 !}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
37
Compute the inverse Laplace transform of  <strong>Compute the inverse Laplace transform of   </strong> A)   e^{-5 t}\left(\frac{3}{2 !} t^{2}-\frac{8}{3 !} t^{3}\right)   B)   e^{5 t}\left(\frac{3}{2 !} t^{2}-\frac{8}{3 !} t^{3}\right)   C)   e^{-5 t}\left(\frac{3}{2 !} t^{2}-\frac{2}{3 !} t^{3}\right)   D)   e^{5 t}\left(\frac{3}{2 !} t^{2}-\frac{2}{3 !} t^{3}\right)

A) e5t(32!t283!t3) e^{-5 t}\left(\frac{3}{2 !} t^{2}-\frac{8}{3 !} t^{3}\right)
B) e5t(32!t283!t3) e^{5 t}\left(\frac{3}{2 !} t^{2}-\frac{8}{3 !} t^{3}\right)
C) e5t(32!t223!t3) e^{-5 t}\left(\frac{3}{2 !} t^{2}-\frac{2}{3 !} t^{3}\right)
D) e5t(32!t223!t3) e^{5 t}\left(\frac{3}{2 !} t^{2}-\frac{2}{3 !} t^{3}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the Laplace transform of the solution x(t) of the following initial value problem:
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:   Wher  </strong> A)   \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)   B)   \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)   C)   \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)   D)   \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)
Wher
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem:   Wher  </strong> A)   \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)   B)   \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)   C)   \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)   D)   \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)

A) 1s2+7s+5(5s+40+(e8πs1)s2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)
B) 1s2+7s+5(5s40+(e8πs1)s2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right)}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)
C) 1s2+7s+5(5s+40+(1e8πs)ss2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)
D) 1s2+7s+5(5s40+(1e8πs)ss2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the Laplace transform of the solution x(t) of the following initial value problem
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem  </strong> A)   \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)   B)   \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{-6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)   C)   \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{-6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)   D)   \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)   E)   \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{-6 s} \frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{48}{s}\right)   F)   \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{-6 s^{2}} s^{3}+\frac{14}{s^{2}}+\frac{48}{s}\right)

A) 1s23s3(3s+5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)
B) 1s23s3(3s+5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{-6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)
C) 1s23s3(3s5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{-6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)
D) 1s23s3(3s5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{6 s}-\frac{2}{s^{3}}+\frac{-14}{s^{2}}+\frac{-48}{s}\right)
E) 1s23s3(3s+5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(-3 s+5+\frac{2}{s^{3}}+e^{-6 s} \frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{48}{s}\right)
F) 1s23s3(3s5+2s3+e6s2s3+14s2+48s) \frac{1}{s^{2}-3 s-3}\left(3 s-5+\frac{2}{s^{3}}+e^{-6 s^{2}} s^{3}+\frac{14}{s^{2}}+\frac{48}{s}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the Laplace transform of the solution x(t) of the following initial value problem
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem  </strong> A)   \frac{-3}{s-5}+\frac{e^{-6 s}}{s(s-5)}   B)   \frac{-3}{s+5}+\frac{e^{-6 s}}{s(s+5)}   C)   -\frac{-3}{s-5}+\frac{e^{6 s}}{s(s-5)}   D)   \frac{-3}{s+5}+\frac{e^{6 s}}{s(s+5)}

A) 3s5+e6ss(s5) \frac{-3}{s-5}+\frac{e^{-6 s}}{s(s-5)}
B) 3s+5+e6ss(s+5) \frac{-3}{s+5}+\frac{e^{-6 s}}{s(s+5)}
C) 3s5+e6ss(s5) -\frac{-3}{s-5}+\frac{e^{6 s}}{s(s-5)}
D) 3s+5+e6ss(s+5) \frac{-3}{s+5}+\frac{e^{6 s}}{s(s+5)}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find the Laplace transform of the solution x(t) of the following initial value problem
 <strong>Find the Laplace transform of the solution x(t) of the following initial value problem  </strong> A)   \frac{e^{-9 s} \cdot 9 !}{s^{10}\left(s^{2}+9\right)}   B)   \frac{e^{9 s} \cdot 9 !}{s^{10}\left(s^{2}+9\right)}   C)   \frac{e^{9 s} \cdot 10 !}{s^{11}\left(s^{2}+9\right)}   D)   \frac{e^{-9 s} \cdot 10 !}{s^{11}\left(s^{2}+9\right)}

A) e9s9!s10(s2+9) \frac{e^{-9 s} \cdot 9 !}{s^{10}\left(s^{2}+9\right)}
B) e9s9!s10(s2+9) \frac{e^{9 s} \cdot 9 !}{s^{10}\left(s^{2}+9\right)}
C) e9s10!s11(s2+9) \frac{e^{9 s} \cdot 10 !}{s^{11}\left(s^{2}+9\right)}
D) e9s10!s11(s2+9) \frac{e^{-9 s} \cdot 10 !}{s^{11}\left(s^{2}+9\right)}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
42
You are given a spring-mass system with a mass of 1 slug, a damping constant 8 lb-sec/foot, and a spring constant of 16 lbs/foot. Suppose the mass is released from rest 1.5 feet below equilibrium, and after 5π seconds the system is given a sharp blow downward which imparts a unit impulse.
(i) Write down a second-order initial value problem whose solution x(t) is the equation of motion for this system.
(ii) Find the Laplace transform X(s) of the solution x(t) of the initial value problem you formulated in part (i).
(iii) Compute the inverse Laplace transform of your function in part (ii).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
43
  ________. Here, δ stands for the Dirac delta function. ________. Here, δ stands for the Dirac delta function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
44
  ________. Here, δ stands for the Dirac delta function. ________. Here, δ stands for the Dirac delta function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
45
Compute the Laplace transform of f(t) = δ(t + 3), where δ stands for the Dirac delta function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
46
Find the Laplace transform of the solution of x(t) of the following initial value problem
 <strong>Find the Laplace transform of the solution of x(t) of the following initial value problem  </strong> A)   \frac{5 s+20-4 e^{5 s}}{(s+2)^{2}}   B)   \frac{5 s+20-4 e^{-5 s}}{(s+2)^{2}}   C)   \frac{25-4 e^{5 s}}{(s+2)^{2}}   D)   \frac{25-4 e^{-5 s}}{(s+2)^{2}}

A) 5s+204e5s(s+2)2 \frac{5 s+20-4 e^{5 s}}{(s+2)^{2}}
B) 5s+204e5s(s+2)2 \frac{5 s+20-4 e^{-5 s}}{(s+2)^{2}}
C) 254e5s(s+2)2 \frac{25-4 e^{5 s}}{(s+2)^{2}}
D) 254e5s(s+2)2 \frac{25-4 e^{-5 s}}{(s+2)^{2}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
47
Consider the following initial value problem
Consider the following initial value problem   (i) Find the Laplace transform X(s) of the solution x(t) of this initial value problem. (ii) Compute the inverse Laplace transform of your function in part (i).
(i) Find the Laplace transform X(s) of the solution x(t) of this initial value problem.
(ii) Compute the inverse Laplace transform of your function in part (i).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
48
Compute <strong>Compute   </strong> A)  B)  C)  D)

A)<strong>Compute   </strong> A)  B)  C)  D)
B)<strong>Compute   </strong> A)  B)  C)  D)
C)<strong>Compute   </strong> A)  B)  C)  D)
D)<strong>Compute   </strong> A)  B)  C)  D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
49
Which of the following are properties of the convolution integral, for all continuous functions f, g, and h? Select all that apply.

A) f(gh)=(fg)h f *\left(g^{*} h\right)=(f * g)^{*} h
B) ff0 f^{*} f \geq 0
C) f1=f f^{*} 1=f
D) fg=gf f * g=g^{*} f
E) f(g+h)=fg+fh f *(g+h)=f * g+f * h
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
50
Compute the Laplace transform of f(t) =  <strong>Compute the Laplace transform of f(t) =   .</strong> A)   \frac{1}{s}-\frac{1}{s-6}   B)   \frac{1}{s}+\frac{1}{(s+6)^{2}}   C)   \frac{1}{s}+\frac{1}{(s-6)^{2}}   D)   \frac{1}{s(s-6)^{2}}   E)   \frac{1}{s(s+6)^{2}}   F)   -\frac{1}{s(s-6)}    .

A) 1s1s6 \frac{1}{s}-\frac{1}{s-6}
B) 1s+1(s+6)2 \frac{1}{s}+\frac{1}{(s+6)^{2}}
C) 1s+1(s6)2 \frac{1}{s}+\frac{1}{(s-6)^{2}}
D) 1s(s6)2 \frac{1}{s(s-6)^{2}}
E) 1s(s+6)2 \frac{1}{s(s+6)^{2}}
F) 1s(s6) -\frac{1}{s(s-6)}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
51
Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.
 <strong>Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.   Find the Laplace transform X(s) of the solution x(t) of this initial value problem. Here, F(s) stands for the Laplace transform of f(t).</strong> A)   \frac{1.6 s+1.4+F(s)}{s^{2}+6}   B)   \frac{-1.6 s-1.4+F(s)}{s^{2}+6}   C)   \frac{1.6 s-1.4+F(s)}{s^{2}+6}   D)   \frac{1.4-1.6 s+F(s)}{s^{2}+6}
Find the Laplace transform X(s) of the solution x(t) of this initial value problem. Here, F(s) stands for the Laplace transform of f(t).

A) 1.6s+1.4+F(s)s2+6 \frac{1.6 s+1.4+F(s)}{s^{2}+6}
B) 1.6s1.4+F(s)s2+6 \frac{-1.6 s-1.4+F(s)}{s^{2}+6}
C) 1.6s1.4+F(s)s2+6 \frac{1.6 s-1.4+F(s)}{s^{2}+6}
D) 1.41.6s+F(s)s2+6 \frac{1.4-1.6 s+F(s)}{s^{2}+6}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
52
Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.
Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.   Find the equation of motion x(t). (Hint: You will need to use a convolution integral.)
Find the equation of motion x(t). (Hint: You will need to use a convolution integral.)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the function f(t) that satisfies the integral equationf(t)
Find the function f(t) that satisfies the integral equationf(t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
54
Compute Compute   * t. * t.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
55
Use the convolution theorem to compute the inverse Laplace transform of  <strong>Use the convolution theorem to compute the inverse Laplace transform of  </strong> A)   \frac{t^{4}}{4 !} * e^{8 t}   B)   \frac{t^{5}}{5 !} * e^{8 t}   C)   \frac{t^{4}}{4 !} * e^{-8 t}   D)   \frac{t^{5}}{5 !} * e^{-8 t}   E)   t^{5} * e^{8 t}   F)   t^{5} * e^{-8 t}

A) t44!e8t \frac{t^{4}}{4 !} * e^{8 t}
B) t55!e8t \frac{t^{5}}{5 !} * e^{8 t}
C) t44!e8t \frac{t^{4}}{4 !} * e^{-8 t}
D) t55!e8t \frac{t^{5}}{5 !} * e^{-8 t}
E) t5e8t t^{5} * e^{8 t}
F) t5e8t t^{5} * e^{-8 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the function f(t) that satisfies the integral equationf(t)
Find the function f(t) that satisfies the integral equationf(t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
57
Use the convolution theorem to compute the inverse Laplace transform of
<strong>Use the convolution theorem to compute the inverse Laplace transform of   Select all that apply.</strong> A) 28 sin(4t) * cos(7t) B) 7 sin(4t) * cos(7t) C) 4 sin(4t) * cos(7t) D) 4 sin(7t) * cos(4t) E) 7 sin(7t) * cos(4t) Select all that apply.

A) 28 sin(4t) * cos(7t)
B) 7 sin(4t) * cos(7t)
C) 4 sin(4t) * cos(7t)
D) 4 sin(7t) * cos(4t)
E) 7 sin(7t) * cos(4t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 57 في هذه المجموعة.