Deck 9: Nonlinear Differential Equations and Stability

ملء الشاشة (f)
exit full mode
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda = -8i B)  \lambda = 8 C)  \lambda = -8 D)  \lambda  = 8i E) \lambda  = 0 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda = -8i B)  \lambda = 8 C)  \lambda = -8 D)  \lambda  = 8i E) \lambda  = 0 <div style=padding-top: 35px>  x.
Identify all the eigenvalues.

A) λ\lambda = -8i
B) λ\lambda = 8
C) λ\lambda = -8
D) λ\lambda = 8i
E) λ\lambda = 0
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda  = -15i B)  \lambda  = 3i C)  \lambda  = 15i D)  \lambda = -6i E)  \lambda  = 6i F)  \lambda  = -3i <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda  = -15i B)  \lambda  = 3i C)  \lambda  = 15i D)  \lambda = -6i E)  \lambda  = 6i F)  \lambda  = -3i <div style=padding-top: 35px>  x.
Identify all the eigenvalues.

A) λ\lambda = -15i
B) λ\lambda = 3i
C) λ\lambda = 15i
D) λ\lambda = -6i
E) λ\lambda = 6i
F) λ\lambda = -3i
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda  = 7i B)  \lambda  = -11i C)  \lambda = -7i D)  \lambda  = -2i E)  \lambda  =  11i <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda  = 7i B)  \lambda  = -11i C)  \lambda = -7i D)  \lambda  = -2i E)  \lambda  =  11i <div style=padding-top: 35px>  x.
Identify all the eigenvalues.

A) λ\lambda = 7i
B) λ\lambda = -11i
C) λ\lambda = -7i
D) λ\lambda = -2i
E) λ\lambda = 11i
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -7 B)  \lambda  = 7 C)  \lambda  = 0 D)  \lambda  = 5 E)  \lambda  = -5 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -7 B)  \lambda  = 7 C)  \lambda  = 0 D)  \lambda  = 5 E)  \lambda  = -5 <div style=padding-top: 35px>  x.
Identify all of the eigenvalues.

A) λ\lambda = -7
B) λ\lambda = 7
C) λ\lambda = 0
D) λ\lambda = 5
E) λ\lambda = -5
سؤال
Consider the linear system <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px> x.
Identify which two of the following are fundamental solution vectors for this system.

A) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
B) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
C) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
D) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
E) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
F) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 5 B)  \lambda  = -5 C)  \lambda  = 0 D)  \lambda  = 2 E)  \lambda = -2 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 5 B)  \lambda  = -5 C)  \lambda  = 0 D)  \lambda  = 2 E)  \lambda = -2 <div style=padding-top: 35px>  x.
Identify all of the eigenvalues.

A) λ\lambda = 5
B) λ\lambda = -5
C) λ\lambda = 0
D) λ\lambda = 2
E) λ\lambda = -2
سؤال
Consider the linear system <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px> x.
Identify which two of the following are fundamental solution vectors for this system.

A) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
B) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
C) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
D) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
E) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
F) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   <div style=padding-top: 35px>
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -6 B)  \lambda  = -10 C)  \lambda  = 0 D)  \lambda  = 10 E)  \lambda = 6 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -6 B)  \lambda  = -10 C)  \lambda  = 0 D)  \lambda  = 10 E)  \lambda = 6 <div style=padding-top: 35px>  x.
Identify all of the eigenvalues.

A) λ\lambda = -6
B) λ\lambda = -10
C) λ\lambda = 0
D) λ\lambda = 10
E) λ\lambda = 6
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -8 B)  \lambda  = -4 C)  \lambda  = 0 D)  \lambda  = -16 E)  \lambda  = 4 F)  \lambda = 16 G)  \lambda  = 8 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -8 B)  \lambda  = -4 C)  \lambda  = 0 D)  \lambda  = -16 E)  \lambda  = 4 F)  \lambda = 16 G)  \lambda  = 8 <div style=padding-top: 35px>  x.
Identify all of the eigenvalues.

A) λ\lambda = -8
B) λ\lambda = -4
C) λ\lambda = 0
D) λ\lambda = -16
E) λ\lambda = 4
F) λ\lambda = 16
G) λ\lambda = 8
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -4 B)  \lambda  = 4 C)  \lambda  = 0 D)  \lambda  = -9 E) \lambda = 9 F)  \lambda = -10 G) \lambda  = 10 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -4 B)  \lambda  = 4 C)  \lambda  = 0 D)  \lambda  = -9 E) \lambda = 9 F)  \lambda = -10 G) \lambda  = 10 <div style=padding-top: 35px>  x.
Identify all of the eigenvalues.

A) λ\lambda = -4
B) λ\lambda = 4
C) λ\lambda = 0
D) λ\lambda = -9
E) λ\lambda = 9
F) λ\lambda = -10
G) λ\lambda = 10
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 10 B)  \lambda  = -10 C)  \lambda  = 0 D)  \lambda  = -9 E)  \lambda  = 9 F)  \lambda  = -2 G)  \lambda  = 2 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 10 B)  \lambda  = -10 C)  \lambda  = 0 D)  \lambda  = -9 E)  \lambda  = 9 F)  \lambda  = -2 G)  \lambda  = 2 <div style=padding-top: 35px>  x.
Identify all of the eigenvalues.

A) λ\lambda = 10
B) λ\lambda = -10
C) λ\lambda = 0
D) λ\lambda = -9
E) λ\lambda = 9
F) λ\lambda = -2
G) λ\lambda = 2
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 0 B)  \lambda  = 4 C)  \lambda  = -4 D) \lambda = 3 E)  \lambda  = -3 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 0 B)  \lambda  = 4 C)  \lambda  = -4 D) \lambda = 3 E)  \lambda  = -3 <div style=padding-top: 35px>  x.
Identify all of the eigenvalues.

A) λ\lambda = 0
B) λ\lambda = 4
C) λ\lambda = -4
D) λ\lambda = 3
E) λ\lambda = -3
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda = 0 B)  \lambda  = -3 C)  \lambda  = 3 D) \lambda  = -4 E)  \lambda  = 4 <div style=padding-top: 35px>  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda = 0 B)  \lambda  = -3 C)  \lambda  = 3 D) \lambda  = -4 E)  \lambda  = 4 <div style=padding-top: 35px>  x.
Identify all of the eigenvalues.

A) λ\lambda = 0
B) λ\lambda = -3
C) λ\lambda = 3
D) λ\lambda = -4
E) λ\lambda = 4
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source <div style=padding-top: 35px> x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
سؤال
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable <div style=padding-top: 35px> x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
سؤال
For which of the following systems is the origin a saddle point?

A)<strong>For which of the following systems is the origin a saddle point?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>For which of the following systems is the origin a saddle point?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>For which of the following systems is the origin a saddle point?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>For which of the following systems is the origin a saddle point?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
سؤال
The trajectories of some nonzero solutions of this system converge to the origin as t \rightarrow \infty while many other solutions do not.

A) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
B) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
C) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
D) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
E) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
سؤال
Every nonzero solution of this system spirals away from the origin.

A)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
B)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
C)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
D)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
E)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
سؤال
For which of the following systems do all solution trajectories converge to the origin as t \rightarrow \infty ?

A) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
B) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
C) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
D) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
E) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
سؤال
For which of the following systems is the origin a degenerate node?

A) x=(2022507)x \mathbf{x}^{\prime}=\left(\begin{array}{ll}2022 & 5 \\ 0 & -7\end{array}\right) \mathbf{x}
B) x=(20222005)x x^{\prime}=\left(\begin{array}{ll}-2022 & 20 \\ 0 & -5\end{array}\right) x
C) x=(2022002022)x \mathbf{x}^{\prime}=\left(\begin{array}{ll}2022 & 0 \\ 0 & 2022\end{array}\right) \mathbf{x}
D) x=(5440)x x^{\prime}=\left(\begin{array}{ll}5 & -4 \\ 4 & 0\end{array}\right) \mathbf{x}
E) x=(0410)x \mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 4 \\ -1 & 0\end{array}\right) \mathbf{x}
سؤال
For which of the following systems is every solution periodic?

A) x=(20222504)x \mathbf{x}^{\prime}=\left(\begin{array}{ll}2022 & -25 \\ 0 & -4\end{array}\right) \mathbf{x}
B) x=(20226004)x x^{\prime}=\left(\begin{array}{ll}-2022 & -60 \\ 0 & -4\end{array}\right) x
C) x=(2022002022)x \mathbf{x}^{\prime}=\left(\begin{array}{ll}2022 & 0 \\ 0 & 2022\end{array}\right) \mathbf{x}
D) x=(4330)x x^{\prime}=\left(\begin{array}{ll}4 & -3 \\ 3 & 0\end{array}\right) x
E) x=(0130)x \mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -3 & 0\end{array}\right) \mathbf{x}
سؤال
Which of the following is a critical point of this nonlinear system?
<strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (7, -4) B) (-7, 4) C)   D) (0, 0) E)   F)   <div style=padding-top: 35px>
Select all that apply.

A) (7, -4)
B) (-7, 4)
C) <strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (7, -4) B) (-7, 4) C)   D) (0, 0) E)   F)   <div style=padding-top: 35px>
D) (0, 0)
E) <strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (7, -4) B) (-7, 4) C)   D) (0, 0) E)   F)   <div style=padding-top: 35px>
F) <strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (7, -4) B) (-7, 4) C)   D) (0, 0) E)   F)   <div style=padding-top: 35px>
سؤال
Which of the following is a critical point of this nonlinear system?
 <strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A)   \left(\frac{5}{4}, \frac{1}{2}\right)   B)   \left(-\frac{4}{5},-2\right)   C)   \left[-\frac{5}{4}, \frac{1}{2}\right)   D)   \left(\frac{5}{4},-\frac{1}{2}\right)   E)   \left(\frac{4}{5}, 2\right)   F)   \left(\frac{4}{5},-2\right)   G)   \left(-\frac{5}{4},-\frac{1}{2}\right)   H)   \left(-\frac{4}{5}, 2\right)   I)   (0,0)   <div style=padding-top: 35px>
Select all that apply.

A) (54,12) \left(\frac{5}{4}, \frac{1}{2}\right)
B) (45,2) \left(-\frac{4}{5},-2\right)
C) [54,12) \left[-\frac{5}{4}, \frac{1}{2}\right)
D) (54,12) \left(\frac{5}{4},-\frac{1}{2}\right)
E) (45,2) \left(\frac{4}{5}, 2\right)
F) (45,2) \left(\frac{4}{5},-2\right)
G) (54,12) \left(-\frac{5}{4},-\frac{1}{2}\right)
H) (45,2) \left(-\frac{4}{5}, 2\right)
I) (0,0) (0,0)
سؤال
Which of the following is a critical point of this nonlinear system?
<strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (1, -1) B) (-7, -7) C) (1, 7) D) (-1, 1) E) (-1, 7) F) (-7, 7) G) (7, 7) H) (0, 0) <div style=padding-top: 35px>
Select all that apply.

A) (1, -1)
B) (-7, -7)
C) (1, 7)
D) (-1, 1)
E) (-1, 7)
F) (-7, 7)
G) (7, 7)
H) (0, 0)
سؤال
Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:
 <strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:   = 6y   = -10 x</strong> A)   y=\frac{3}{5} x   B)   6 y^{2}--10 x^{2}=C   C)   6 y^{2}+-10 x^{2}=C   D)   y=\frac{5}{3} x   <div style=padding-top: 35px>  = 6y
 <strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:   = 6y   = -10 x</strong> A)   y=\frac{3}{5} x   B)   6 y^{2}--10 x^{2}=C   C)   6 y^{2}+-10 x^{2}=C   D)   y=\frac{5}{3} x   <div style=padding-top: 35px>  = -10 x

A) y=35x y=\frac{3}{5} x
B) 6y210x2=C 6 y^{2}--10 x^{2}=C
C) 6y2+10x2=C 6 y^{2}+-10 x^{2}=C
D) y=53x y=\frac{5}{3} x
سؤال
Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:
<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A)<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
سؤال
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. <div style=padding-top: 35px> = <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. <div style=padding-top: 35px> <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. <div style=padding-top: 35px> + <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. <div style=padding-top: 35px>
Let <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. <div style=padding-top: 35px> Express x and y using polar coordinates and determine which of these statements is true.

A) The system is locally linear near the origin.
B) The system is not locally linear near the origin because <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. <div style=padding-top: 35px>
C) The system is not locally linear near the origin because <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. <div style=padding-top: 35px>
D) The origin is not an isolated critical point.
سؤال
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   . D) The origin is not an isolated critical point. E) Both B and C. <div style=padding-top: 35px>
Express x and y using polar coordinates and determine which of these statements is true.

A) The system is locally linear near the origin.
B) The system is not locally linear near the origin because <strong>Consider the following nonlinear system:   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   . D) The origin is not an isolated critical point. E) Both B and C. <div style=padding-top: 35px>
C) The system is not locally linear near the origin because <strong>Consider the following nonlinear system:   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   . D) The origin is not an isolated critical point. E) Both B and C. <div style=padding-top: 35px> .
D) The origin is not an isolated critical point.
E) Both B and C.
سؤال
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of the following is a critical point of this nonlinear system? Select all that apply.</strong> A) (2, -2) B) (-7, -7) C) (2, 7) D) (-2, 2) E) (-2, 7) F) (-7, 7) G) (7, 7) H) (0, 0) <div style=padding-top: 35px>
Which of the following is a critical point of this nonlinear system? Select all that apply.

A) (2, -2)
B) (-7, -7)
C) (2, 7)
D) (-2, 2)
E) (-2, 7)
F) (-7, 7)
G) (7, 7)
H) (0, 0)
سؤال
Consider the following nonlinear system:
Consider the following nonlinear system:  <div style=padding-top: 35px>
سؤال
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of the following statements are true? Select all that apply.</strong> A) (-3, 3) is an asymptotically stable node. B) (3, -3) is an unstable spiral node. C) (-3, 3) is an unstable node. D) (6, 6) is an unstable node. E) (6, -6) is an unstable node. F) (6, 6) is an asymptotically stable node. G) (0, 0) is a saddle point. H) (-6, -6) is an asymptotically stable node. <div style=padding-top: 35px>
Which of the following statements are true? Select all that apply.

A) (-3, 3) is an asymptotically stable node.
B) (3, -3) is an unstable spiral node.
C) (-3, 3) is an unstable node.
D) (6, 6) is an unstable node.
E) (6, -6) is an unstable node.
F) (6, 6) is an asymptotically stable node.
G) (0, 0) is a saddle point.
H) (-6, -6) is an asymptotically stable node.
سؤال
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
Which of the following is a complete list of the critical points of this nonlinear system?

A)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
B)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
C)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
D)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
E)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)  <div style=padding-top: 35px>
سؤال
Consider the following nonlinear system:
Consider the following nonlinear system:  <div style=padding-top: 35px>
سؤال
Consider the following nonlinear system:
 <strong>Consider the following nonlinear system:   Which of the following statements are true? Select all that apply.</strong> A)   \left(\frac{\pi}{6}, \frac{5 \pi}{18}\right)   is an unstable saddle point. B)   \left(-\frac{\pi}{6}, \frac{\pi}{18}\right)   is a stable center. C)   \left(-\frac{\pi}{6}, \frac{\pi}{36}\right)   is a stable center. D)   \left(\frac{\pi}{3},-\frac{5 \pi}{18}\right)   is an asymptotically stable spiral point. E)   \left(\frac{3 \pi}{6},-\frac{\pi}{18}\right)   is an improper node. F)   \left(\frac{\pi}{3}, \frac{\pi}{36}\right)   is a stable center. <div style=padding-top: 35px>
Which of the following statements are true? Select all that apply.

A) (π6,5π18) \left(\frac{\pi}{6}, \frac{5 \pi}{18}\right) is an unstable saddle point.
B) (π6,π18) \left(-\frac{\pi}{6}, \frac{\pi}{18}\right) is a stable center.
C) (π6,π36) \left(-\frac{\pi}{6}, \frac{\pi}{36}\right) is a stable center.
D) (π3,5π18) \left(\frac{\pi}{3},-\frac{5 \pi}{18}\right) is an asymptotically stable spiral point.
E) (3π6,π18) \left(\frac{3 \pi}{6},-\frac{\pi}{18}\right) is an improper node.
F) (π3,π36) \left(\frac{\pi}{3}, \frac{\pi}{36}\right) is a stable center.
سؤال
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of the following statements is true?</strong> A) The origin is an unstable spiral point. B) The origin is an asymptotically stable node. C) The origin is an asymptotically stable spiral point. D) The origin is a stable sink. E) The origin is a stable improper node. <div style=padding-top: 35px>
Which of the following statements is true?

A) The origin is an unstable spiral point.
B) The origin is an asymptotically stable node.
C) The origin is an asymptotically stable spiral point.
D) The origin is a stable sink.
E) The origin is a stable improper node.
سؤال
Consider this competing species model:
 <strong>Consider this competing species model:   Which of these are critical points for this system? Select all that apply.</strong> A)   \left(0, \frac{4}{7}\right)   B)   \left(\frac{4}{7}, 0\right)   C)   \left(0, \frac{8}{7}\right)   D)   \left(0, \frac{7}{8}\right)   E)   \left[-\frac{4}{7}, 0\right)   F)   \left(0,-\frac{8}{7}\right)   G)   (0,0)   H)   \left(2,-\frac{10}{7}\right)   <div style=padding-top: 35px>
Which of these are critical points for this system? Select all that apply.

A) (0,47) \left(0, \frac{4}{7}\right)
B) (47,0) \left(\frac{4}{7}, 0\right)
C) (0,87) \left(0, \frac{8}{7}\right)
D) (0,78) \left(0, \frac{7}{8}\right)
E) [47,0) \left[-\frac{4}{7}, 0\right)
F) (0,87) \left(0,-\frac{8}{7}\right)
G) (0,0) (0,0)
H) (2,107) \left(2,-\frac{10}{7}\right)
سؤال
Consider this competing species model:
 <strong>Consider this competing species model:   Which of the following statements are true? Select all that apply.</strong> A) The entire first quadrant is the basin of attraction for the critical point   \left(-\frac{1}{3}, \frac{5}{3}\right)  . B) The origin is an unstable node. C) Both   \left(-\frac{6}{7}, 0\right)   and   \left(-\frac{2}{3}, 0\right)   are saddle points. D) Both   \left(\frac{6}{7}, 0\right)   and   \left(0, \frac{2}{3}\right)   are saddle points E) All solution trajectories approach the origin as   t \rightarrow \infty  . F) The critical point   \left(-\frac{1}{3}, \frac{5}{3}\right)   corresponds to coexistence in this model. <div style=padding-top: 35px>
Which of the following statements are true? Select all that apply.

A) The entire first quadrant is the basin of attraction for the critical point (13,53) \left(-\frac{1}{3}, \frac{5}{3}\right) .
B) The origin is an unstable node.
C) Both (67,0) \left(-\frac{6}{7}, 0\right) and (23,0) \left(-\frac{2}{3}, 0\right) are saddle points.
D) Both (67,0) \left(\frac{6}{7}, 0\right) and (0,23) \left(0, \frac{2}{3}\right) are saddle points
E) All solution trajectories approach the origin as t t \rightarrow \infty .
F) The critical point (13,53) \left(-\frac{1}{3}, \frac{5}{3}\right) corresponds to coexistence in this model.
سؤال
Suppose ? is a real parameter. Consider this competing species model:
 <strong>Suppose ? is a real parameter. Consider this competing species model:   Which of these are true? Select all that apply.</strong> A) The origin is a critical point of this system for all values of   \alpha  . B) The   x  -nullcline is the curve   \frac{6}{3} x^{2}+\frac{4}{3} x  . C) The   y  -nullcline is the horizontal line   y=\frac{2}{7} \alpha  . D) The system has no critical points for values of   \alpha<-\frac{7}{9}   <div style=padding-top: 35px>
Which of these are true? Select all that apply.

A) The origin is a critical point of this system for all values of α \alpha .
B) The x x -nullcline is the curve 63x2+43x \frac{6}{3} x^{2}+\frac{4}{3} x .
C) The y y -nullcline is the horizontal line y=27α y=\frac{2}{7} \alpha .
D) The system has no critical points for values of α<79 \alpha<-\frac{7}{9}
سؤال
Suppose ? is a positive real parameter. Consider this competing species model:
<strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)  <div style=padding-top: 35px>
What are the nullclines for this system?

A) x = 0
B) y = 0
C) <strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)  <div style=padding-top: 35px>
D) 4x + 3y = 1
E) <strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)  <div style=padding-top: 35px>
F)<strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)  <div style=padding-top: 35px>
G)<strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)  <div style=padding-top: 35px>
H)<strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)  <div style=padding-top: 35px>
سؤال
Suppose ? is a positive real parameter. Consider this competing species model:
 <strong>Suppose ? is a positive real parameter. Consider this competing species model:   Which of these are critical points for this system? Select all that apply.</strong> A)  \left(0, \frac{2}{\alpha}\right)   B)  (0,0)   C)  \left(\frac{2}{\alpha}, 0\right)   D)   \left(0, \frac{\alpha}{2}\right)   E)  \left(\frac{2}{3}, 0\right)   F)  \left(\frac{3}{2}, 0\right)   G)  \left(\alpha-2, \frac{-3 \alpha-8}{2}\right)   H)  \left(-\alpha+2, \frac{-3 \alpha-8}{2}\right)   I)  \left(2-\alpha, \frac{3 \alpha+8}{2}\right)   <div style=padding-top: 35px>
Which of these are critical points for this system? Select all that apply.

A) (0,2α) \left(0, \frac{2}{\alpha}\right)
B) (0,0) (0,0)
C) (2α,0) \left(\frac{2}{\alpha}, 0\right)
D) (0,α2) \left(0, \frac{\alpha}{2}\right)
E) (23,0) \left(\frac{2}{3}, 0\right)
F) (32,0) \left(\frac{3}{2}, 0\right)
G) (α2,3α82) \left(\alpha-2, \frac{-3 \alpha-8}{2}\right)
H) (α+2,3α82) \left(-\alpha+2, \frac{-3 \alpha-8}{2}\right)
I) (2α,3α+82) \left(2-\alpha, \frac{3 \alpha+8}{2}\right)
سؤال
Suppose α is a positive real parameter. Consider this competing species model:
Suppose α is a positive real parameter. Consider this competing species model: ‪  <div style=padding-top: 35px>
سؤال
Suppose ? is a positive real parameter. Consider this competing species model:
<strong>Suppose ? is a positive real parameter. Consider this competing species model:   Which of the following statements is true?</strong> A) The origin is an unstable node. B) The origin is an unstable saddle point. C) The origin is an asymptotically stable node. D) The origin is a stable center. <div style=padding-top: 35px>
Which of the following statements is true?

A) The origin is an unstable node.
B) The origin is an unstable saddle point.
C) The origin is an asymptotically stable node.
D) The origin is a stable center.
سؤال
Consider the following Lotka-Volterra system of equations:
Consider the following Lotka-Volterra system of equations:   Determine all critical points for this system.<div style=padding-top: 35px>
Determine all critical points for this system.
سؤال
Consider the following Lotka-Volterra system of equations:
Consider the following Lotka-Volterra system of equations:  <div style=padding-top: 35px>
سؤال
Consider the following Lotka-Volterra system of equations:
 <strong>Consider the following Lotka-Volterra system of equations:   Which of these statements are true? Select all that apply.</strong> A) The solution trajectories all spiral away from the point   \left(-\frac{4}{5},-\frac{3}{2}\right)   as   t \rightarrow \infty   B) The solution trajectories are closed curves encircling the point   \left(\frac{4}{5}, \frac{3}{2}\right)  . C) The point   \left(\frac{3}{2}, \frac{4}{5}\right)   is an unstable node. D) The predator and prey populations exhibit a cyclic variation. E) The origin is a saddle point. F) The period of the solution trajectories is   \frac{2 \pi}{\sqrt{6.0}}   <div style=padding-top: 35px>
Which of these statements are true? Select all that apply.

A) The solution trajectories all spiral away from the point (45,32) \left(-\frac{4}{5},-\frac{3}{2}\right) as t t \rightarrow \infty
B) The solution trajectories are closed curves encircling the point (45,32) \left(\frac{4}{5}, \frac{3}{2}\right) .
C) The point (32,45) \left(\frac{3}{2}, \frac{4}{5}\right) is an unstable node.
D) The predator and prey populations exhibit a cyclic variation.
E) The origin is a saddle point.
F) The period of the solution trajectories is 2π6.0 \frac{2 \pi}{\sqrt{6.0}}
سؤال
Consider the function V(x, y) = 7  <strong>Consider the function V(x, y) = 7   +  \alpha xy + 5   , where  \alpha  is a real number.Which of these statements is true?</strong> A) V(x, y) is negative definite, for every nonzero real number  \alpha . B) V(x, y) is positive definite, for every nonzero real number  \alpha . C) V(x, y) is negative definite, for every real number  \alpha  for which   > 140. D) V(x, y) is positive definite, for every real number  \alpha  for which   < 140. <div style=padding-top: 35px>  + α\alpha xy + 5  <strong>Consider the function V(x, y) = 7   +  \alpha xy + 5   , where  \alpha  is a real number.Which of these statements is true?</strong> A) V(x, y) is negative definite, for every nonzero real number  \alpha . B) V(x, y) is positive definite, for every nonzero real number  \alpha . C) V(x, y) is negative definite, for every real number  \alpha  for which   > 140. D) V(x, y) is positive definite, for every real number  \alpha  for which   < 140. <div style=padding-top: 35px>  , where α\alpha is a real number.Which of these statements is true?

A) V(x, y) is negative definite, for every nonzero real number α\alpha .
B) V(x, y) is positive definite, for every nonzero real number α\alpha .
C) V(x, y) is negative definite, for every real number α\alpha for which  <strong>Consider the function V(x, y) = 7   +  \alpha xy + 5   , where  \alpha  is a real number.Which of these statements is true?</strong> A) V(x, y) is negative definite, for every nonzero real number  \alpha . B) V(x, y) is positive definite, for every nonzero real number  \alpha . C) V(x, y) is negative definite, for every real number  \alpha  for which   > 140. D) V(x, y) is positive definite, for every real number  \alpha  for which   < 140. <div style=padding-top: 35px>  > 140.
D) V(x, y) is positive definite, for every real number α\alpha for which  <strong>Consider the function V(x, y) = 7   +  \alpha xy + 5   , where  \alpha  is a real number.Which of these statements is true?</strong> A) V(x, y) is negative definite, for every nonzero real number  \alpha . B) V(x, y) is positive definite, for every nonzero real number  \alpha . C) V(x, y) is negative definite, for every real number  \alpha  for which   > 140. D) V(x, y) is positive definite, for every real number  \alpha  for which   < 140. <div style=padding-top: 35px>  < 140.
سؤال
Consider the following nonlinear system:
Consider the following nonlinear system:  <div style=padding-top: 35px>
سؤال
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   What can you conclude about this nonlinear system?</strong> A) The origin is asymptotically stable. B) The origin is an unstable node. C) The basin of attraction for the origin is the entire xy-plane. D) The origin is a center and all solution trajectories encircle it. <div style=padding-top: 35px>
What can you conclude about this nonlinear system?

A) The origin is asymptotically stable.
B) The origin is an unstable node.
C) The basin of attraction for the origin is the entire xy-plane.
D) The origin is a center and all solution trajectories encircle it.
سؤال
Consider the following nonlinear system:
Consider the following nonlinear system:   Convert this system into an equivalent system in polar form.<div style=padding-top: 35px>
Convert this system into an equivalent system in polar form.
سؤال
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of these statements is true? Select all that apply.</strong> A) There are no isolated closed trajectories for this system. B) For r > 0, the corresponding solution trajectories spiral outward away from r = 1 in a counterclockwise fashion. C) For 0 < r < 1, the corresponding solution trajectories spiral toward the origin in a counterclockwise fashion. D) The unit circle is a semistable limit cycle. E) The unit circle is an unstable limit cycle. <div style=padding-top: 35px>
Which of these statements is true? Select all that apply.

A) There are no isolated closed trajectories for this system.
B) For r > 0, the corresponding solution trajectories spiral outward away from r = 1 in a counterclockwise fashion.
C) For 0 < r < 1, the corresponding solution trajectories spiral toward the origin in a counterclockwise fashion.
D) The unit circle is a semistable limit cycle.
E) The unit circle is an unstable limit cycle.
سؤال
Consider the following nonlinear system expressed in polar form:
<strong>Consider the following nonlinear system expressed in polar form:   = r( r - 2)( r - 8)   = 1 Which of these statements is true? Select all that apply.</strong> A) r = 8 is a semistable limit cycle. B) r = 2 is an asymptotically stable limit cycle. C) For 2 < r < 8, the corresponding solution trajectories spiral outward away from r = 2 in a clockwise fashion. D) For 0 < r < 2, the corresponding solution trajectories spiral toward the origin in a clockwise fashion. E) For r > 8, the corresponding solution trajectories spiral outward away from r = 8 in a counterclockwise fashion. <div style=padding-top: 35px> = r( r - 2)( r - 8)
<strong>Consider the following nonlinear system expressed in polar form:   = r( r - 2)( r - 8)   = 1 Which of these statements is true? Select all that apply.</strong> A) r = 8 is a semistable limit cycle. B) r = 2 is an asymptotically stable limit cycle. C) For 2 < r < 8, the corresponding solution trajectories spiral outward away from r = 2 in a clockwise fashion. D) For 0 < r < 2, the corresponding solution trajectories spiral toward the origin in a clockwise fashion. E) For r > 8, the corresponding solution trajectories spiral outward away from r = 8 in a counterclockwise fashion. <div style=padding-top: 35px> = 1
Which of these statements is true? Select all that apply.

A) r = 8 is a semistable limit cycle.
B) r = 2 is an asymptotically stable limit cycle.
C) For 2 < r < 8, the corresponding solution trajectories spiral outward away from r = 2 in a clockwise fashion.
D) For 0 < r < 2, the corresponding solution trajectories spiral toward the origin in a clockwise fashion.
E) For r > 8, the corresponding solution trajectories spiral outward away from r = 8 in a counterclockwise fashion.
سؤال
Consider the following nonlinear system expressed in polar form: <strong>Consider the following nonlinear system expressed in polar form:   = r   ( r - 7)   = -1 Which of these statements is true? Select all that apply.</strong> A) All solution trajectories approach either r = 5 or r = 7 in a counterclockwise fashion. B) r = 5 is a semistable limit cycle. C) r = 7 is an unstable limit cycle. D) For 0 < r < 5, the corresponding solution trajectories spiral toward r = 5 in a clockwise fashion. E) For r > 7, the corresponding solution trajectories spiral outward away from r = 7 in a counterclockwise fashion. <div style=padding-top: 35px> = r <strong>Consider the following nonlinear system expressed in polar form:   = r   ( r - 7)   = -1 Which of these statements is true? Select all that apply.</strong> A) All solution trajectories approach either r = 5 or r = 7 in a counterclockwise fashion. B) r = 5 is a semistable limit cycle. C) r = 7 is an unstable limit cycle. D) For 0 < r < 5, the corresponding solution trajectories spiral toward r = 5 in a clockwise fashion. E) For r > 7, the corresponding solution trajectories spiral outward away from r = 7 in a counterclockwise fashion. <div style=padding-top: 35px> ( r - 7)
<strong>Consider the following nonlinear system expressed in polar form:   = r   ( r - 7)   = -1 Which of these statements is true? Select all that apply.</strong> A) All solution trajectories approach either r = 5 or r = 7 in a counterclockwise fashion. B) r = 5 is a semistable limit cycle. C) r = 7 is an unstable limit cycle. D) For 0 < r < 5, the corresponding solution trajectories spiral toward r = 5 in a clockwise fashion. E) For r > 7, the corresponding solution trajectories spiral outward away from r = 7 in a counterclockwise fashion. <div style=padding-top: 35px> = -1
Which of these statements is true? Select all that apply.

A) All solution trajectories approach either r = 5 or r = 7 in a counterclockwise fashion.
B) r = 5 is a semistable limit cycle.
C) r = 7 is an unstable limit cycle.
D) For 0 < r < 5, the corresponding solution trajectories spiral toward r = 5 in a clockwise fashion.
E) For r > 7, the corresponding solution trajectories spiral outward away from r = 7 in a counterclockwise fashion.
سؤال
Consider the van der Pol equation Consider the van der Pol equation   - 2.8(1 -   )   + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y =   .<div style=padding-top: 35px> - 2.8(1 - Consider the van der Pol equation   - 2.8(1 -   )   + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y =   .<div style=padding-top: 35px> ) Consider the van der Pol equation   - 2.8(1 -   )   + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y =   .<div style=padding-top: 35px> + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y = Consider the van der Pol equation   - 2.8(1 -   )   + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y =   .<div style=padding-top: 35px> .
سؤال
Consider the van der Pol equation Consider the van der Pol equation   - 4.2(1 -   )   + u = 0. The origin is an unstable node.<div style=padding-top: 35px> - 4.2(1 - Consider the van der Pol equation   - 4.2(1 -   )   + u = 0. The origin is an unstable node.<div style=padding-top: 35px> ) Consider the van der Pol equation   - 4.2(1 -   )   + u = 0. The origin is an unstable node.<div style=padding-top: 35px> + u = 0.
The origin is an unstable node.
سؤال
Consider the van der Pol equation Consider the van der Pol equation   - 3.6(1 -   )   + u = 0.If a closed trajectory exists, it must encircle the origin.<div style=padding-top: 35px> - 3.6(1 - Consider the van der Pol equation   - 3.6(1 -   )   + u = 0.If a closed trajectory exists, it must encircle the origin.<div style=padding-top: 35px> ) Consider the van der Pol equation   - 3.6(1 -   )   + u = 0.If a closed trajectory exists, it must encircle the origin.<div style=padding-top: 35px> + u = 0.If a closed trajectory exists, it must encircle the origin.
سؤال
Consider the van der Pol equation Consider the van der Pol equation   - 2.4(1 -   )   + u = 0.If a closed trajectory exists, then it must be contained within the vertical strip |x| < 1.<div style=padding-top: 35px> - 2.4(1 - Consider the van der Pol equation   - 2.4(1 -   )   + u = 0.If a closed trajectory exists, then it must be contained within the vertical strip |x| < 1.<div style=padding-top: 35px> ) Consider the van der Pol equation   - 2.4(1 -   )   + u = 0.If a closed trajectory exists, then it must be contained within the vertical strip |x| < 1.<div style=padding-top: 35px> + u = 0.If a closed trajectory exists, then it must be contained within the vertical strip |x| < 1.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/76
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 9: Nonlinear Differential Equations and Stability
1
Consider the linear system  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda = -8i B)  \lambda = 8 C)  \lambda = -8 D)  \lambda  = 8i E) \lambda  = 0  =  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda = -8i B)  \lambda = 8 C)  \lambda = -8 D)  \lambda  = 8i E) \lambda  = 0  x.
Identify all the eigenvalues.

A) λ\lambda = -8i
B) λ\lambda = 8
C) λ\lambda = -8
D) λ\lambda = 8i
E) λ\lambda = 0
λ\lambda = -8i
λ\lambda = 8i
2
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
center
3
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
a stable
4
Consider the linear system  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda  = -15i B)  \lambda  = 3i C)  \lambda  = 15i D)  \lambda = -6i E)  \lambda  = 6i F)  \lambda  = -3i  =  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda  = -15i B)  \lambda  = 3i C)  \lambda  = 15i D)  \lambda = -6i E)  \lambda  = 6i F)  \lambda  = -3i  x.
Identify all the eigenvalues.

A) λ\lambda = -15i
B) λ\lambda = 3i
C) λ\lambda = 15i
D) λ\lambda = -6i
E) λ\lambda = 6i
F) λ\lambda = -3i
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
5
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
6
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
7
Consider the linear system  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda  = 7i B)  \lambda  = -11i C)  \lambda = -7i D)  \lambda  = -2i E)  \lambda  =  11i  =  <strong>Consider the linear system   =   x. Identify all the eigenvalues.</strong> A)  \lambda  = 7i B)  \lambda  = -11i C)  \lambda = -7i D)  \lambda  = -2i E)  \lambda  =  11i  x.
Identify all the eigenvalues.

A) λ\lambda = 7i
B) λ\lambda = -11i
C) λ\lambda = -7i
D) λ\lambda = -2i
E) λ\lambda = 11i
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
8
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
9
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
10
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -7 B)  \lambda  = 7 C)  \lambda  = 0 D)  \lambda  = 5 E)  \lambda  = -5  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -7 B)  \lambda  = 7 C)  \lambda  = 0 D)  \lambda  = 5 E)  \lambda  = -5  x.
Identify all of the eigenvalues.

A) λ\lambda = -7
B) λ\lambda = 7
C) λ\lambda = 0
D) λ\lambda = 5
E) λ\lambda = -5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
11
Consider the linear system <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   = <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   x.
Identify which two of the following are fundamental solution vectors for this system.

A) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
B) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
C) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
D) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
E) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
F) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
12
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
13
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
14
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 5 B)  \lambda  = -5 C)  \lambda  = 0 D)  \lambda  = 2 E)  \lambda = -2  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 5 B)  \lambda  = -5 C)  \lambda  = 0 D)  \lambda  = 2 E)  \lambda = -2  x.
Identify all of the eigenvalues.

A) λ\lambda = 5
B) λ\lambda = -5
C) λ\lambda = 0
D) λ\lambda = 2
E) λ\lambda = -2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
15
Consider the linear system <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   = <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)   x.
Identify which two of the following are fundamental solution vectors for this system.

A) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
B) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
C) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
D) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
E) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
F) <strong>Consider the linear system   =   x. Identify which two of the following are fundamental solution vectors for this system.</strong> A)   B)   C)   D)   E)   F)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
16
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
17
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
18
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -6 B)  \lambda  = -10 C)  \lambda  = 0 D)  \lambda  = 10 E)  \lambda = 6  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -6 B)  \lambda  = -10 C)  \lambda  = 0 D)  \lambda  = 10 E)  \lambda = 6  x.
Identify all of the eigenvalues.

A) λ\lambda = -6
B) λ\lambda = -10
C) λ\lambda = 0
D) λ\lambda = 10
E) λ\lambda = 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
19
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
20
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
21
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -8 B)  \lambda  = -4 C)  \lambda  = 0 D)  \lambda  = -16 E)  \lambda  = 4 F)  \lambda = 16 G)  \lambda  = 8  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -8 B)  \lambda  = -4 C)  \lambda  = 0 D)  \lambda  = -16 E)  \lambda  = 4 F)  \lambda = 16 G)  \lambda  = 8  x.
Identify all of the eigenvalues.

A) λ\lambda = -8
B) λ\lambda = -4
C) λ\lambda = 0
D) λ\lambda = -16
E) λ\lambda = 4
F) λ\lambda = 16
G) λ\lambda = 8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
22
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
23
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
24
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -4 B)  \lambda  = 4 C)  \lambda  = 0 D)  \lambda  = -9 E) \lambda = 9 F)  \lambda = -10 G) \lambda  = 10  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = -4 B)  \lambda  = 4 C)  \lambda  = 0 D)  \lambda  = -9 E) \lambda = 9 F)  \lambda = -10 G) \lambda  = 10  x.
Identify all of the eigenvalues.

A) λ\lambda = -4
B) λ\lambda = 4
C) λ\lambda = 0
D) λ\lambda = -9
E) λ\lambda = 9
F) λ\lambda = -10
G) λ\lambda = 10
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
25
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
26
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
27
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 10 B)  \lambda  = -10 C)  \lambda  = 0 D)  \lambda  = -9 E)  \lambda  = 9 F)  \lambda  = -2 G)  \lambda  = 2  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 10 B)  \lambda  = -10 C)  \lambda  = 0 D)  \lambda  = -9 E)  \lambda  = 9 F)  \lambda  = -2 G)  \lambda  = 2  x.
Identify all of the eigenvalues.

A) λ\lambda = 10
B) λ\lambda = -10
C) λ\lambda = 0
D) λ\lambda = -9
E) λ\lambda = 9
F) λ\lambda = -2
G) λ\lambda = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
28
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
29
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
30
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 0 B)  \lambda  = 4 C)  \lambda  = -4 D) \lambda = 3 E)  \lambda  = -3  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda  = 0 B)  \lambda  = 4 C)  \lambda  = -4 D) \lambda = 3 E)  \lambda  = -3  x.
Identify all of the eigenvalues.

A) λ\lambda = 0
B) λ\lambda = 4
C) λ\lambda = -4
D) λ\lambda = 3
E) λ\lambda = -3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
31
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
32
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
33
Consider the linear system  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda = 0 B)  \lambda  = -3 C)  \lambda  = 3 D) \lambda  = -4 E)  \lambda  = 4  =  <strong>Consider the linear system   =   x. Identify all of the eigenvalues.</strong> A)  \lambda = 0 B)  \lambda  = -3 C)  \lambda  = 3 D) \lambda  = -4 E)  \lambda  = 4  x.
Identify all of the eigenvalues.

A) λ\lambda = 0
B) λ\lambda = -3
C) λ\lambda = 3
D) λ\lambda = -4
E) λ\lambda = 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
34
Consider the linear system <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source = <strong>Consider the linear system   =   x. The origin is a ________.</strong> A) spiral sink B) center C) spiral source D) nodal sink E) saddle point F) degenerate node G) nodal source x.
The origin is a ________.

A) spiral sink
B) center
C) spiral source
D) nodal sink
E) saddle point
F) degenerate node
G) nodal source
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
35
Consider the linear system <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable = <strong>Consider the linear system   =   x. The origin is ________ critical point.</strong> A) a stable B) an unstable C) an asymptotically stable x.
The origin is ________ critical point.

A) a stable
B) an unstable
C) an asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
36
For which of the following systems is the origin a saddle point?

A)<strong>For which of the following systems is the origin a saddle point?</strong> A)  B)  C)  D)
B)<strong>For which of the following systems is the origin a saddle point?</strong> A)  B)  C)  D)
C)<strong>For which of the following systems is the origin a saddle point?</strong> A)  B)  C)  D)
D)<strong>For which of the following systems is the origin a saddle point?</strong> A)  B)  C)  D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
37
The trajectories of some nonzero solutions of this system converge to the origin as t \rightarrow \infty while many other solutions do not.

A) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)
B) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)
C) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)
D) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)
E) <strong>The trajectories of some nonzero solutions of this system converge to the origin as t  \rightarrow   \infty  while many other solutions do not.</strong> A)  B)  C)  D)  E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
38
Every nonzero solution of this system spirals away from the origin.

A)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)
B)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)
C)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)
D)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)
E)<strong>Every nonzero solution of this system spirals away from the origin.</strong> A)  B)  C)  D)  E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
39
For which of the following systems do all solution trajectories converge to the origin as t \rightarrow \infty ?

A) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)
B) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)
C) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)
D) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)
E) <strong>For which of the following systems do all solution trajectories converge to the origin as t  \rightarrow   \infty ?</strong> A)  B)  C)  D)  E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
40
For which of the following systems is the origin a degenerate node?

A) x=(2022507)x \mathbf{x}^{\prime}=\left(\begin{array}{ll}2022 & 5 \\ 0 & -7\end{array}\right) \mathbf{x}
B) x=(20222005)x x^{\prime}=\left(\begin{array}{ll}-2022 & 20 \\ 0 & -5\end{array}\right) x
C) x=(2022002022)x \mathbf{x}^{\prime}=\left(\begin{array}{ll}2022 & 0 \\ 0 & 2022\end{array}\right) \mathbf{x}
D) x=(5440)x x^{\prime}=\left(\begin{array}{ll}5 & -4 \\ 4 & 0\end{array}\right) \mathbf{x}
E) x=(0410)x \mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 4 \\ -1 & 0\end{array}\right) \mathbf{x}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
41
For which of the following systems is every solution periodic?

A) x=(20222504)x \mathbf{x}^{\prime}=\left(\begin{array}{ll}2022 & -25 \\ 0 & -4\end{array}\right) \mathbf{x}
B) x=(20226004)x x^{\prime}=\left(\begin{array}{ll}-2022 & -60 \\ 0 & -4\end{array}\right) x
C) x=(2022002022)x \mathbf{x}^{\prime}=\left(\begin{array}{ll}2022 & 0 \\ 0 & 2022\end{array}\right) \mathbf{x}
D) x=(4330)x x^{\prime}=\left(\begin{array}{ll}4 & -3 \\ 3 & 0\end{array}\right) x
E) x=(0130)x \mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -3 & 0\end{array}\right) \mathbf{x}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
42
Which of the following is a critical point of this nonlinear system?
<strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (7, -4) B) (-7, 4) C)   D) (0, 0) E)   F)
Select all that apply.

A) (7, -4)
B) (-7, 4)
C) <strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (7, -4) B) (-7, 4) C)   D) (0, 0) E)   F)
D) (0, 0)
E) <strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (7, -4) B) (-7, 4) C)   D) (0, 0) E)   F)
F) <strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (7, -4) B) (-7, 4) C)   D) (0, 0) E)   F)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
43
Which of the following is a critical point of this nonlinear system?
 <strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A)   \left(\frac{5}{4}, \frac{1}{2}\right)   B)   \left(-\frac{4}{5},-2\right)   C)   \left[-\frac{5}{4}, \frac{1}{2}\right)   D)   \left(\frac{5}{4},-\frac{1}{2}\right)   E)   \left(\frac{4}{5}, 2\right)   F)   \left(\frac{4}{5},-2\right)   G)   \left(-\frac{5}{4},-\frac{1}{2}\right)   H)   \left(-\frac{4}{5}, 2\right)   I)   (0,0)
Select all that apply.

A) (54,12) \left(\frac{5}{4}, \frac{1}{2}\right)
B) (45,2) \left(-\frac{4}{5},-2\right)
C) [54,12) \left[-\frac{5}{4}, \frac{1}{2}\right)
D) (54,12) \left(\frac{5}{4},-\frac{1}{2}\right)
E) (45,2) \left(\frac{4}{5}, 2\right)
F) (45,2) \left(\frac{4}{5},-2\right)
G) (54,12) \left(-\frac{5}{4},-\frac{1}{2}\right)
H) (45,2) \left(-\frac{4}{5}, 2\right)
I) (0,0) (0,0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
44
Which of the following is a critical point of this nonlinear system?
<strong>Which of the following is a critical point of this nonlinear system?   Select all that apply.</strong> A) (1, -1) B) (-7, -7) C) (1, 7) D) (-1, 1) E) (-1, 7) F) (-7, 7) G) (7, 7) H) (0, 0)
Select all that apply.

A) (1, -1)
B) (-7, -7)
C) (1, 7)
D) (-1, 1)
E) (-1, 7)
F) (-7, 7)
G) (7, 7)
H) (0, 0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:
 <strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:   = 6y   = -10 x</strong> A)   y=\frac{3}{5} x   B)   6 y^{2}--10 x^{2}=C   C)   6 y^{2}+-10 x^{2}=C   D)   y=\frac{5}{3} x    = 6y
 <strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:   = 6y   = -10 x</strong> A)   y=\frac{3}{5} x   B)   6 y^{2}--10 x^{2}=C   C)   6 y^{2}+-10 x^{2}=C   D)   y=\frac{5}{3} x    = -10 x

A) y=35x y=\frac{3}{5} x
B) 6y210x2=C 6 y^{2}--10 x^{2}=C
C) 6y2+10x2=C 6 y^{2}+-10 x^{2}=C
D) y=53x y=\frac{5}{3} x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
46
Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:
<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)

A)<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)
B)<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)
C)<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)
D)<strong>Find an equation of the form H(x, y) = C, where C is an arbitrary real constant, satisfied by the trajectories of the following nonlinear system:  </strong> A)  B)  C)  D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
47
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. = <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. + <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point.
Let <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point. Express x and y using polar coordinates and determine which of these statements is true.

A) The system is locally linear near the origin.
B) The system is not locally linear near the origin because <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point.
C) The system is not locally linear near the origin because <strong>Consider the following nonlinear system:   =     +   Let   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   D) The origin is not an isolated critical point.
D) The origin is not an isolated critical point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
48
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   . D) The origin is not an isolated critical point. E) Both B and C.
Express x and y using polar coordinates and determine which of these statements is true.

A) The system is locally linear near the origin.
B) The system is not locally linear near the origin because <strong>Consider the following nonlinear system:   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   . D) The origin is not an isolated critical point. E) Both B and C.
C) The system is not locally linear near the origin because <strong>Consider the following nonlinear system:   Express x and y using polar coordinates and determine which of these statements is true.</strong> A) The system is locally linear near the origin. B) The system is not locally linear near the origin because   C) The system is not locally linear near the origin because   . D) The origin is not an isolated critical point. E) Both B and C. .
D) The origin is not an isolated critical point.
E) Both B and C.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
49
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of the following is a critical point of this nonlinear system? Select all that apply.</strong> A) (2, -2) B) (-7, -7) C) (2, 7) D) (-2, 2) E) (-2, 7) F) (-7, 7) G) (7, 7) H) (0, 0)
Which of the following is a critical point of this nonlinear system? Select all that apply.

A) (2, -2)
B) (-7, -7)
C) (2, 7)
D) (-2, 2)
E) (-2, 7)
F) (-7, 7)
G) (7, 7)
H) (0, 0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
50
Consider the following nonlinear system:
Consider the following nonlinear system:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
51
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of the following statements are true? Select all that apply.</strong> A) (-3, 3) is an asymptotically stable node. B) (3, -3) is an unstable spiral node. C) (-3, 3) is an unstable node. D) (6, 6) is an unstable node. E) (6, -6) is an unstable node. F) (6, 6) is an asymptotically stable node. G) (0, 0) is a saddle point. H) (-6, -6) is an asymptotically stable node.
Which of the following statements are true? Select all that apply.

A) (-3, 3) is an asymptotically stable node.
B) (3, -3) is an unstable spiral node.
C) (-3, 3) is an unstable node.
D) (6, 6) is an unstable node.
E) (6, -6) is an unstable node.
F) (6, 6) is an asymptotically stable node.
G) (0, 0) is a saddle point.
H) (-6, -6) is an asymptotically stable node.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
52
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)
Which of the following is a complete list of the critical points of this nonlinear system?

A)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)
B)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)
C)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)
D)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)
E)<strong>Consider the following nonlinear system:   Which of the following is a complete list of the critical points of this nonlinear system?</strong> A)  B)  C)  D)  E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
53
Consider the following nonlinear system:
Consider the following nonlinear system:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
54
Consider the following nonlinear system:
 <strong>Consider the following nonlinear system:   Which of the following statements are true? Select all that apply.</strong> A)   \left(\frac{\pi}{6}, \frac{5 \pi}{18}\right)   is an unstable saddle point. B)   \left(-\frac{\pi}{6}, \frac{\pi}{18}\right)   is a stable center. C)   \left(-\frac{\pi}{6}, \frac{\pi}{36}\right)   is a stable center. D)   \left(\frac{\pi}{3},-\frac{5 \pi}{18}\right)   is an asymptotically stable spiral point. E)   \left(\frac{3 \pi}{6},-\frac{\pi}{18}\right)   is an improper node. F)   \left(\frac{\pi}{3}, \frac{\pi}{36}\right)   is a stable center.
Which of the following statements are true? Select all that apply.

A) (π6,5π18) \left(\frac{\pi}{6}, \frac{5 \pi}{18}\right) is an unstable saddle point.
B) (π6,π18) \left(-\frac{\pi}{6}, \frac{\pi}{18}\right) is a stable center.
C) (π6,π36) \left(-\frac{\pi}{6}, \frac{\pi}{36}\right) is a stable center.
D) (π3,5π18) \left(\frac{\pi}{3},-\frac{5 \pi}{18}\right) is an asymptotically stable spiral point.
E) (3π6,π18) \left(\frac{3 \pi}{6},-\frac{\pi}{18}\right) is an improper node.
F) (π3,π36) \left(\frac{\pi}{3}, \frac{\pi}{36}\right) is a stable center.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
55
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of the following statements is true?</strong> A) The origin is an unstable spiral point. B) The origin is an asymptotically stable node. C) The origin is an asymptotically stable spiral point. D) The origin is a stable sink. E) The origin is a stable improper node.
Which of the following statements is true?

A) The origin is an unstable spiral point.
B) The origin is an asymptotically stable node.
C) The origin is an asymptotically stable spiral point.
D) The origin is a stable sink.
E) The origin is a stable improper node.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
56
Consider this competing species model:
 <strong>Consider this competing species model:   Which of these are critical points for this system? Select all that apply.</strong> A)   \left(0, \frac{4}{7}\right)   B)   \left(\frac{4}{7}, 0\right)   C)   \left(0, \frac{8}{7}\right)   D)   \left(0, \frac{7}{8}\right)   E)   \left[-\frac{4}{7}, 0\right)   F)   \left(0,-\frac{8}{7}\right)   G)   (0,0)   H)   \left(2,-\frac{10}{7}\right)
Which of these are critical points for this system? Select all that apply.

A) (0,47) \left(0, \frac{4}{7}\right)
B) (47,0) \left(\frac{4}{7}, 0\right)
C) (0,87) \left(0, \frac{8}{7}\right)
D) (0,78) \left(0, \frac{7}{8}\right)
E) [47,0) \left[-\frac{4}{7}, 0\right)
F) (0,87) \left(0,-\frac{8}{7}\right)
G) (0,0) (0,0)
H) (2,107) \left(2,-\frac{10}{7}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
57
Consider this competing species model:
 <strong>Consider this competing species model:   Which of the following statements are true? Select all that apply.</strong> A) The entire first quadrant is the basin of attraction for the critical point   \left(-\frac{1}{3}, \frac{5}{3}\right)  . B) The origin is an unstable node. C) Both   \left(-\frac{6}{7}, 0\right)   and   \left(-\frac{2}{3}, 0\right)   are saddle points. D) Both   \left(\frac{6}{7}, 0\right)   and   \left(0, \frac{2}{3}\right)   are saddle points E) All solution trajectories approach the origin as   t \rightarrow \infty  . F) The critical point   \left(-\frac{1}{3}, \frac{5}{3}\right)   corresponds to coexistence in this model.
Which of the following statements are true? Select all that apply.

A) The entire first quadrant is the basin of attraction for the critical point (13,53) \left(-\frac{1}{3}, \frac{5}{3}\right) .
B) The origin is an unstable node.
C) Both (67,0) \left(-\frac{6}{7}, 0\right) and (23,0) \left(-\frac{2}{3}, 0\right) are saddle points.
D) Both (67,0) \left(\frac{6}{7}, 0\right) and (0,23) \left(0, \frac{2}{3}\right) are saddle points
E) All solution trajectories approach the origin as t t \rightarrow \infty .
F) The critical point (13,53) \left(-\frac{1}{3}, \frac{5}{3}\right) corresponds to coexistence in this model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
58
Suppose ? is a real parameter. Consider this competing species model:
 <strong>Suppose ? is a real parameter. Consider this competing species model:   Which of these are true? Select all that apply.</strong> A) The origin is a critical point of this system for all values of   \alpha  . B) The   x  -nullcline is the curve   \frac{6}{3} x^{2}+\frac{4}{3} x  . C) The   y  -nullcline is the horizontal line   y=\frac{2}{7} \alpha  . D) The system has no critical points for values of   \alpha<-\frac{7}{9}
Which of these are true? Select all that apply.

A) The origin is a critical point of this system for all values of α \alpha .
B) The x x -nullcline is the curve 63x2+43x \frac{6}{3} x^{2}+\frac{4}{3} x .
C) The y y -nullcline is the horizontal line y=27α y=\frac{2}{7} \alpha .
D) The system has no critical points for values of α<79 \alpha<-\frac{7}{9}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
59
Suppose ? is a positive real parameter. Consider this competing species model:
<strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)
What are the nullclines for this system?

A) x = 0
B) y = 0
C) <strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)
D) 4x + 3y = 1
E) <strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)
F)<strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)
G)<strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)
H)<strong>Suppose ? is a positive real parameter. Consider this competing species model:   What are the nullclines for this system?</strong> A) x = 0 B) y = 0 C)   D) 4x + 3y = 1 E)   F)  G)  H)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
60
Suppose ? is a positive real parameter. Consider this competing species model:
 <strong>Suppose ? is a positive real parameter. Consider this competing species model:   Which of these are critical points for this system? Select all that apply.</strong> A)  \left(0, \frac{2}{\alpha}\right)   B)  (0,0)   C)  \left(\frac{2}{\alpha}, 0\right)   D)   \left(0, \frac{\alpha}{2}\right)   E)  \left(\frac{2}{3}, 0\right)   F)  \left(\frac{3}{2}, 0\right)   G)  \left(\alpha-2, \frac{-3 \alpha-8}{2}\right)   H)  \left(-\alpha+2, \frac{-3 \alpha-8}{2}\right)   I)  \left(2-\alpha, \frac{3 \alpha+8}{2}\right)
Which of these are critical points for this system? Select all that apply.

A) (0,2α) \left(0, \frac{2}{\alpha}\right)
B) (0,0) (0,0)
C) (2α,0) \left(\frac{2}{\alpha}, 0\right)
D) (0,α2) \left(0, \frac{\alpha}{2}\right)
E) (23,0) \left(\frac{2}{3}, 0\right)
F) (32,0) \left(\frac{3}{2}, 0\right)
G) (α2,3α82) \left(\alpha-2, \frac{-3 \alpha-8}{2}\right)
H) (α+2,3α82) \left(-\alpha+2, \frac{-3 \alpha-8}{2}\right)
I) (2α,3α+82) \left(2-\alpha, \frac{3 \alpha+8}{2}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
61
Suppose α is a positive real parameter. Consider this competing species model:
Suppose α is a positive real parameter. Consider this competing species model: ‪
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
62
Suppose ? is a positive real parameter. Consider this competing species model:
<strong>Suppose ? is a positive real parameter. Consider this competing species model:   Which of the following statements is true?</strong> A) The origin is an unstable node. B) The origin is an unstable saddle point. C) The origin is an asymptotically stable node. D) The origin is a stable center.
Which of the following statements is true?

A) The origin is an unstable node.
B) The origin is an unstable saddle point.
C) The origin is an asymptotically stable node.
D) The origin is a stable center.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
63
Consider the following Lotka-Volterra system of equations:
Consider the following Lotka-Volterra system of equations:   Determine all critical points for this system.
Determine all critical points for this system.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
64
Consider the following Lotka-Volterra system of equations:
Consider the following Lotka-Volterra system of equations:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
65
Consider the following Lotka-Volterra system of equations:
 <strong>Consider the following Lotka-Volterra system of equations:   Which of these statements are true? Select all that apply.</strong> A) The solution trajectories all spiral away from the point   \left(-\frac{4}{5},-\frac{3}{2}\right)   as   t \rightarrow \infty   B) The solution trajectories are closed curves encircling the point   \left(\frac{4}{5}, \frac{3}{2}\right)  . C) The point   \left(\frac{3}{2}, \frac{4}{5}\right)   is an unstable node. D) The predator and prey populations exhibit a cyclic variation. E) The origin is a saddle point. F) The period of the solution trajectories is   \frac{2 \pi}{\sqrt{6.0}}
Which of these statements are true? Select all that apply.

A) The solution trajectories all spiral away from the point (45,32) \left(-\frac{4}{5},-\frac{3}{2}\right) as t t \rightarrow \infty
B) The solution trajectories are closed curves encircling the point (45,32) \left(\frac{4}{5}, \frac{3}{2}\right) .
C) The point (32,45) \left(\frac{3}{2}, \frac{4}{5}\right) is an unstable node.
D) The predator and prey populations exhibit a cyclic variation.
E) The origin is a saddle point.
F) The period of the solution trajectories is 2π6.0 \frac{2 \pi}{\sqrt{6.0}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
66
Consider the function V(x, y) = 7  <strong>Consider the function V(x, y) = 7   +  \alpha xy + 5   , where  \alpha  is a real number.Which of these statements is true?</strong> A) V(x, y) is negative definite, for every nonzero real number  \alpha . B) V(x, y) is positive definite, for every nonzero real number  \alpha . C) V(x, y) is negative definite, for every real number  \alpha  for which   > 140. D) V(x, y) is positive definite, for every real number  \alpha  for which   < 140.  + α\alpha xy + 5  <strong>Consider the function V(x, y) = 7   +  \alpha xy + 5   , where  \alpha  is a real number.Which of these statements is true?</strong> A) V(x, y) is negative definite, for every nonzero real number  \alpha . B) V(x, y) is positive definite, for every nonzero real number  \alpha . C) V(x, y) is negative definite, for every real number  \alpha  for which   > 140. D) V(x, y) is positive definite, for every real number  \alpha  for which   < 140.  , where α\alpha is a real number.Which of these statements is true?

A) V(x, y) is negative definite, for every nonzero real number α\alpha .
B) V(x, y) is positive definite, for every nonzero real number α\alpha .
C) V(x, y) is negative definite, for every real number α\alpha for which  <strong>Consider the function V(x, y) = 7   +  \alpha xy + 5   , where  \alpha  is a real number.Which of these statements is true?</strong> A) V(x, y) is negative definite, for every nonzero real number  \alpha . B) V(x, y) is positive definite, for every nonzero real number  \alpha . C) V(x, y) is negative definite, for every real number  \alpha  for which   > 140. D) V(x, y) is positive definite, for every real number  \alpha  for which   < 140.  > 140.
D) V(x, y) is positive definite, for every real number α\alpha for which  <strong>Consider the function V(x, y) = 7   +  \alpha xy + 5   , where  \alpha  is a real number.Which of these statements is true?</strong> A) V(x, y) is negative definite, for every nonzero real number  \alpha . B) V(x, y) is positive definite, for every nonzero real number  \alpha . C) V(x, y) is negative definite, for every real number  \alpha  for which   > 140. D) V(x, y) is positive definite, for every real number  \alpha  for which   < 140.  < 140.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
67
Consider the following nonlinear system:
Consider the following nonlinear system:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
68
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   What can you conclude about this nonlinear system?</strong> A) The origin is asymptotically stable. B) The origin is an unstable node. C) The basin of attraction for the origin is the entire xy-plane. D) The origin is a center and all solution trajectories encircle it.
What can you conclude about this nonlinear system?

A) The origin is asymptotically stable.
B) The origin is an unstable node.
C) The basin of attraction for the origin is the entire xy-plane.
D) The origin is a center and all solution trajectories encircle it.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
69
Consider the following nonlinear system:
Consider the following nonlinear system:   Convert this system into an equivalent system in polar form.
Convert this system into an equivalent system in polar form.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
70
Consider the following nonlinear system:
<strong>Consider the following nonlinear system:   Which of these statements is true? Select all that apply.</strong> A) There are no isolated closed trajectories for this system. B) For r > 0, the corresponding solution trajectories spiral outward away from r = 1 in a counterclockwise fashion. C) For 0 < r < 1, the corresponding solution trajectories spiral toward the origin in a counterclockwise fashion. D) The unit circle is a semistable limit cycle. E) The unit circle is an unstable limit cycle.
Which of these statements is true? Select all that apply.

A) There are no isolated closed trajectories for this system.
B) For r > 0, the corresponding solution trajectories spiral outward away from r = 1 in a counterclockwise fashion.
C) For 0 < r < 1, the corresponding solution trajectories spiral toward the origin in a counterclockwise fashion.
D) The unit circle is a semistable limit cycle.
E) The unit circle is an unstable limit cycle.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
71
Consider the following nonlinear system expressed in polar form:
<strong>Consider the following nonlinear system expressed in polar form:   = r( r - 2)( r - 8)   = 1 Which of these statements is true? Select all that apply.</strong> A) r = 8 is a semistable limit cycle. B) r = 2 is an asymptotically stable limit cycle. C) For 2 < r < 8, the corresponding solution trajectories spiral outward away from r = 2 in a clockwise fashion. D) For 0 < r < 2, the corresponding solution trajectories spiral toward the origin in a clockwise fashion. E) For r > 8, the corresponding solution trajectories spiral outward away from r = 8 in a counterclockwise fashion. = r( r - 2)( r - 8)
<strong>Consider the following nonlinear system expressed in polar form:   = r( r - 2)( r - 8)   = 1 Which of these statements is true? Select all that apply.</strong> A) r = 8 is a semistable limit cycle. B) r = 2 is an asymptotically stable limit cycle. C) For 2 < r < 8, the corresponding solution trajectories spiral outward away from r = 2 in a clockwise fashion. D) For 0 < r < 2, the corresponding solution trajectories spiral toward the origin in a clockwise fashion. E) For r > 8, the corresponding solution trajectories spiral outward away from r = 8 in a counterclockwise fashion. = 1
Which of these statements is true? Select all that apply.

A) r = 8 is a semistable limit cycle.
B) r = 2 is an asymptotically stable limit cycle.
C) For 2 < r < 8, the corresponding solution trajectories spiral outward away from r = 2 in a clockwise fashion.
D) For 0 < r < 2, the corresponding solution trajectories spiral toward the origin in a clockwise fashion.
E) For r > 8, the corresponding solution trajectories spiral outward away from r = 8 in a counterclockwise fashion.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
72
Consider the following nonlinear system expressed in polar form: <strong>Consider the following nonlinear system expressed in polar form:   = r   ( r - 7)   = -1 Which of these statements is true? Select all that apply.</strong> A) All solution trajectories approach either r = 5 or r = 7 in a counterclockwise fashion. B) r = 5 is a semistable limit cycle. C) r = 7 is an unstable limit cycle. D) For 0 < r < 5, the corresponding solution trajectories spiral toward r = 5 in a clockwise fashion. E) For r > 7, the corresponding solution trajectories spiral outward away from r = 7 in a counterclockwise fashion. = r <strong>Consider the following nonlinear system expressed in polar form:   = r   ( r - 7)   = -1 Which of these statements is true? Select all that apply.</strong> A) All solution trajectories approach either r = 5 or r = 7 in a counterclockwise fashion. B) r = 5 is a semistable limit cycle. C) r = 7 is an unstable limit cycle. D) For 0 < r < 5, the corresponding solution trajectories spiral toward r = 5 in a clockwise fashion. E) For r > 7, the corresponding solution trajectories spiral outward away from r = 7 in a counterclockwise fashion. ( r - 7)
<strong>Consider the following nonlinear system expressed in polar form:   = r   ( r - 7)   = -1 Which of these statements is true? Select all that apply.</strong> A) All solution trajectories approach either r = 5 or r = 7 in a counterclockwise fashion. B) r = 5 is a semistable limit cycle. C) r = 7 is an unstable limit cycle. D) For 0 < r < 5, the corresponding solution trajectories spiral toward r = 5 in a clockwise fashion. E) For r > 7, the corresponding solution trajectories spiral outward away from r = 7 in a counterclockwise fashion. = -1
Which of these statements is true? Select all that apply.

A) All solution trajectories approach either r = 5 or r = 7 in a counterclockwise fashion.
B) r = 5 is a semistable limit cycle.
C) r = 7 is an unstable limit cycle.
D) For 0 < r < 5, the corresponding solution trajectories spiral toward r = 5 in a clockwise fashion.
E) For r > 7, the corresponding solution trajectories spiral outward away from r = 7 in a counterclockwise fashion.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
73
Consider the van der Pol equation Consider the van der Pol equation   - 2.8(1 -   )   + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y =   . - 2.8(1 - Consider the van der Pol equation   - 2.8(1 -   )   + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y =   . ) Consider the van der Pol equation   - 2.8(1 -   )   + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y =   . + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y = Consider the van der Pol equation   - 2.8(1 -   )   + u = 0.Write this equation as a nonlinear system in x and y, where x = u and y =   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
74
Consider the van der Pol equation Consider the van der Pol equation   - 4.2(1 -   )   + u = 0. The origin is an unstable node. - 4.2(1 - Consider the van der Pol equation   - 4.2(1 -   )   + u = 0. The origin is an unstable node. ) Consider the van der Pol equation   - 4.2(1 -   )   + u = 0. The origin is an unstable node. + u = 0.
The origin is an unstable node.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
75
Consider the van der Pol equation Consider the van der Pol equation   - 3.6(1 -   )   + u = 0.If a closed trajectory exists, it must encircle the origin. - 3.6(1 - Consider the van der Pol equation   - 3.6(1 -   )   + u = 0.If a closed trajectory exists, it must encircle the origin. ) Consider the van der Pol equation   - 3.6(1 -   )   + u = 0.If a closed trajectory exists, it must encircle the origin. + u = 0.If a closed trajectory exists, it must encircle the origin.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
76
Consider the van der Pol equation Consider the van der Pol equation   - 2.4(1 -   )   + u = 0.If a closed trajectory exists, then it must be contained within the vertical strip |x| < 1. - 2.4(1 - Consider the van der Pol equation   - 2.4(1 -   )   + u = 0.If a closed trajectory exists, then it must be contained within the vertical strip |x| < 1. ) Consider the van der Pol equation   - 2.4(1 -   )   + u = 0.If a closed trajectory exists, then it must be contained within the vertical strip |x| < 1. + u = 0.If a closed trajectory exists, then it must be contained within the vertical strip |x| < 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.