Deck 16: Vector Fields

ملء الشاشة (f)
exit full mode
سؤال
Find the gradient vector field of f(x, y) = ln ( <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> + 3y).

A) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> j
B) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> j
C) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> j
D) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> j
E) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j <div style=padding-top: 35px> j
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the gradient vector field <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> f(x,y) of f(x, y) = <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> .

A) - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> i - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> j - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> k
B) <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> i + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> j + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> k
C) <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> i + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> j + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> k
D) <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> i + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> j + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> k
E) - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> i - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> j - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k <div style=padding-top: 35px> k
سؤال
Describe the streamlines of the given velocity field v(x, y, z) = - yi + xj.

A) concentric circles centred on the x-axis in planes perpendicular to the x-axis
B) concentric circles centred on the y-axis in planes perpendicular to the y-axis
C) concentric circles centred on the z-axis in planes perpendicular to the z-axis
D) hyperbolas in planes perpendicular to the z-axis
E) parabolas in planes perpendicular to the z-axis
سؤال
Show that r(t) = Show that r(t) =   i + 2t j +   k for t ≠ 0 is a streamline for the velocity vector field   .<div style=padding-top: 35px> i + 2t j + Show that r(t) =   i + 2t j +   k for t ≠ 0 is a streamline for the velocity vector field   .<div style=padding-top: 35px> k for t ≠ 0 is a streamline for the velocity vector field Show that r(t) =   i + 2t j +   k for t ≠ 0 is a streamline for the velocity vector field   .<div style=padding-top: 35px> .
سؤال
Find the family of field lines of the plane polar field F(r, θ\theta ) = 2  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta  <div style=padding-top: 35px>  + θ\theta  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta  <div style=padding-top: 35px>  .

A) r = C θ\theta
B) r =  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta  <div style=padding-top: 35px>  + C
C) r = C  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta  <div style=padding-top: 35px>
D) r = C  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta  <div style=padding-top: 35px>
E) r = ln θ\theta
سؤال
Find parametric equations of the streamline of the velocity field v(x, y, z) = y i - y j + y k that passes through the point (2, -3, -4).

A) x = 2 + t, y = -3 - t, z = -4 + t
B) x = 2 + t, y = -3 + t, z = -4 + t
C) x = 2 + t, y = -3 - t, z = -4 - t
D) x = 2 + t, y = 3 - t, z = 4 + t
E) x = 2t, y = -3t, z = -4t
سؤال
Find a vector parametric equation of the field line of the vector field F(x, y, z) = -y i + x j + k that passes through the point (2, 0, 0).

A) r = 2 cos t i + 2 sin t j - t k
B) r = 2 cos t i + 2 sin t j + t k
C) r = 2 cos t i - 2 sin t j + t k
D) r = cos t i + sin t j + t k
E) r = 2 cos t i + 2 sin t j
سؤال
Define carefully what is meant by: The function V(x,y) is a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous system associated with the vector field F = P(x,y) i + Q(j, x,y).Assume that P and Q have continuous partial derivatives in D.
سؤال
The function V(x,y) = 3 The function V(x,y) = 3   +3xy + 5   is a Liapunov function for the autonomous system associated with the vector field F = (y -7x) i + (3x - 5y) j in any domain D containing the fixed point at the origin.<div style=padding-top: 35px> +3xy + 5 The function V(x,y) = 3   +3xy + 5   is a Liapunov function for the autonomous system associated with the vector field F = (y -7x) i + (3x - 5y) j in any domain D containing the fixed point at the origin.<div style=padding-top: 35px> is a Liapunov function for the autonomous system associated with the vector field F = (y -7x) i + (3x - 5y) j in any domain D containing the fixed point at the origin.
سؤال
Use a suitable Liapunov function to show that the fixed point at the origin for the autonomous system Use a suitable Liapunov function to show that the fixed point at the origin for the autonomous system   is at least stable.<div style=padding-top: 35px> is at least stable.
سؤال
Use the Liapunov function V(x,y) = Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j.<div style=padding-top: 35px> ( Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j.<div style=padding-top: 35px> + Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j.<div style=padding-top: 35px> ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j.<div style=padding-top: 35px> ) i + (x - y Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j.<div style=padding-top: 35px> ) j.
سؤال
Show that the fixed point at the origin for the autonomous system Show that the fixed point at the origin for the autonomous system   is unstable.<div style=padding-top: 35px> is unstable.
سؤال
The Liapunov function V(x,y) = 2 The Liapunov function V(x,y) = 2   - xy + 3   is suitable to confirm that the fixed point at the origin for the autonomous system   is at least stable.<div style=padding-top: 35px> - xy + 3 The Liapunov function V(x,y) = 2   - xy + 3   is suitable to confirm that the fixed point at the origin for the autonomous system   is at least stable.<div style=padding-top: 35px> is suitable to confirm that the fixed point at the origin for the autonomous system The Liapunov function V(x,y) = 2   - xy + 3   is suitable to confirm that the fixed point at the origin for the autonomous system   is at least stable.<div style=padding-top: 35px> is at least stable.
سؤال
Let V(x , y) = A <strong>Let V(x , y) = A   + B   , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system   .Find A and B if the derivative of V along the trajectories of the system is equal to -   .Is the origin stable, asymptotically stable, or unstable?</strong> A) A = 2, B = -3; asymptotically stable B) A = -2, B = -3; unstable C) A =2, B = 3; unstable D) A = -2, B = 3; stable E) A = 2, B = 3; asymptotically stable <div style=padding-top: 35px> + B <strong>Let V(x , y) = A   + B   , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system   .Find A and B if the derivative of V along the trajectories of the system is equal to -   .Is the origin stable, asymptotically stable, or unstable?</strong> A) A = 2, B = -3; asymptotically stable B) A = -2, B = -3; unstable C) A =2, B = 3; unstable D) A = -2, B = 3; stable E) A = 2, B = 3; asymptotically stable <div style=padding-top: 35px> , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system <strong>Let V(x , y) = A   + B   , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system   .Find A and B if the derivative of V along the trajectories of the system is equal to -   .Is the origin stable, asymptotically stable, or unstable?</strong> A) A = 2, B = -3; asymptotically stable B) A = -2, B = -3; unstable C) A =2, B = 3; unstable D) A = -2, B = 3; stable E) A = 2, B = 3; asymptotically stable <div style=padding-top: 35px> .Find A and B if the derivative of V along the trajectories of the system is equal to - <strong>Let V(x , y) = A   + B   , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system   .Find A and B if the derivative of V along the trajectories of the system is equal to -   .Is the origin stable, asymptotically stable, or unstable?</strong> A) A = 2, B = -3; asymptotically stable B) A = -2, B = -3; unstable C) A =2, B = 3; unstable D) A = -2, B = 3; stable E) A = 2, B = 3; asymptotically stable <div style=padding-top: 35px> .Is the origin stable, asymptotically stable, or unstable?

A) A = 2, B = -3; asymptotically stable
B) A = -2, B = -3; unstable
C) A =2, B = 3; unstable
D) A = -2, B = 3; stable
E) A = 2, B = 3; asymptotically stable
سؤال
Is F (x,y) = (3 <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. <div style=padding-top: 35px> y + 2x <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. <div style=padding-top: 35px> + 1) i + ( <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. <div style=padding-top: 35px> + 2 <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. <div style=padding-top: 35px> y + 1) j conservative? If so, find a potential for it.

A) <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. <div style=padding-top: 35px>
B) <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. <div style=padding-top: 35px>
C) <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. <div style=padding-top: 35px>
D) <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. <div style=padding-top: 35px>
E) No, it is not conservative.
سؤال
Is F (x,y,z) = 6xy sin(2z) i + 3 <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. <div style=padding-top: 35px> sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.

A) yes, <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. <div style=padding-top: 35px> (x,y) = 3 <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. <div style=padding-top: 35px> y sin(2z) + C
B) yes, 11ee7ba1_26b3_e973_ae82_2f72847b9867_TB9661_11 (x,y) = 3 <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. <div style=padding-top: 35px> y cos(2z) + C
C) yes, 11ee7ba1_26b3_e973_ae82_2f72847b9867_TB9661_11 (x,y) = 6xy sin(2z) + C
D) yes, 11ee7ba1_26b3_e973_ae82_2f72847b9867_TB9661_11 (x,y) = 3x <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. <div style=padding-top: 35px> sin(2z) + C
E) No, it is not conservative.
سؤال
An equipotential surface of a conservative vector field F is given by <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> + ln( <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> ) = 12 for y, z > 0.Find F.

A) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
 <strong>  For what values of the constants A, B, and C is F conservative?</strong> A) A = 2, B = - \pi , C = 1 B) A = 3, B = - \pi , C = -1 C) A = 3, B = -2, C = -1 D) A = 2, B =  \pi , C = 2 E) There are no values of A, B, and C that will make F conservative. <div style=padding-top: 35px>  For what values of the constants A, B, and C is F conservative?

A) A = 2, B = - π\pi , C = 1
B) A = 3, B = - π\pi , C = -1
C) A = 3, B = -2, C = -1
D) A = 2, B = π\pi , C = 2
E) There are no values of A, B, and C that will make F conservative.
سؤال
The gradient of a scalar field  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  expressed in terms of polar coordinates [r, θ\theta ] in the plane is <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  (r, θ\theta ) =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  .  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  Use the result above to find the necessary condition for the vector field F(r, θ\theta ) = P(r, θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  + Q(r, θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  to be conservative.

A)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>
B)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  = r  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>
C)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  = -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>
D)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  - r  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  = Q
E)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r <div style=padding-top: 35px>  = r
سؤال
Find the equipotential surfaces of the conservative field F(x,y,z) = <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C <div style=padding-top: 35px> (i + x j + 2x k).

A) x <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C <div style=padding-top: 35px> = C
B) x <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C <div style=padding-top: 35px> = C
C) <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C <div style=padding-top: 35px> <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C <div style=padding-top: 35px> = C
D) x <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C <div style=padding-top: 35px> = C
E) y <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C <div style=padding-top: 35px> = C
سؤال
(a)In terms of polar coordinates r and θ\theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j.
(b) In terms of polar coordinates r and θ\theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.

A) (a) radial lines θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>  (b) circles r =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>
B) (a) circles r =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>  (b) radial lines θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>
C) (a) circles r =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>  sin( θ\theta ) (b) circles r =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>  cos( θ\theta )
D) (a) lines r cos θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>  (b) lines r sin θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>
E) (a) lines r cos θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>  (b) radial lines θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =   <div style=padding-top: 35px>
سؤال
Which of the following three vector fields is conservative?
F = (4xz + 4 <strong>Which of the following three vector fields is conservative? F = (4xz + 4   ) i + (xy +   ) j + (2yz + 2   ) k, G = 7xy j H = F + G</strong> A) only F B) only G C) only H D) only F and G E) All three are conservative. <div style=padding-top: 35px> ) i + (xy + <strong>Which of the following three vector fields is conservative? F = (4xz + 4   ) i + (xy +   ) j + (2yz + 2   ) k, G = 7xy j H = F + G</strong> A) only F B) only G C) only H D) only F and G E) All three are conservative. <div style=padding-top: 35px> ) j + (2yz + 2 <strong>Which of the following three vector fields is conservative? F = (4xz + 4   ) i + (xy +   ) j + (2yz + 2   ) k, G = 7xy j H = F + G</strong> A) only F B) only G C) only H D) only F and G E) All three are conservative. <div style=padding-top: 35px> ) k,
G = 7xy j
H = F + G

A) only F
B) only G
C) only H
D) only F and G
E) All three are conservative.
سؤال
Let F = <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> i + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> j + K <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> k. For what value of the constant K is F conservative?
If K has that value, find the family of equipotential surfaces of F.

A) K = -1, z = C( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> )
B) K = 1, <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> = C( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> )
C) K = -1, z ( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> ) = C
D) K = -2, <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> = C( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> )
E) K = 2, z = C( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) <div style=padding-top: 35px> )
سؤال
If F and G are plane conservative vector fields with potentials If F and G are plane conservative vector fields with potentials   and  , respectively, then the vector field H = 3F - 2G is also conservative with potential 3  - 2https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .<div style=padding-top: 35px> and If F and G are plane conservative vector fields with potentials   and  , respectively, then the vector field H = 3F - 2G is also conservative with potential 3  - 2https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .<div style=padding-top: 35px> , respectively, then the vector field H = 3F - 2G is also conservative with potential 311ee7ba1_f0bb_6cc5_ae82_7109d7d2775a_TB9661_11 - 2https://d2lvgg3v3hfg70.cloudfront.net/TB9661/11ee7ba1_ff03_9556_ae82_45b7421486b4_TB9661_11.
سؤال
The gradient of a scalar field  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  expressed in terms of polar coordinates [r, θ\theta ] in the plane is <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  (r, θ\theta ) =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  .  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  Use the result above to find the constant real numbers a and b such that the vector field F =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  cos(2 θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  + a  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  sin(2 θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  is conservative.

A) a = 1 , b = -1
B) a = -1 , b = 2
C) a = -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  , b = 2
D) a = -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  , b = 2
E) a =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2 <div style=padding-top: 35px>  , b = -2
سؤال
The gradient of a scalar field  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  expressed in terms of polar coordinates [r, θ\theta ] in the plane is <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  (r, θ\theta ) =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  .  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  sin( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  .

A) 4  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  cos( θ\theta ) + C
B) - 8r sin( θ\theta ) + C
C)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>
D)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  cos( θ\theta ) + C
E)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C <div style=padding-top: 35px>  + C
سؤال
A potential function of a vector field F is given by  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>  , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F.
Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>  .

A) r sin(2 θ\theta ) + r cos(2 θ\theta )
B) r sin(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>  + r cos(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>
C) r sin(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>  - r cos(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>
D) r sin(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>  +  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>  r cos(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta ) <div style=padding-top: 35px>
E) r sin(2 θ\theta ) - r cos(2 θ\theta )
سؤال
Describe the family of equipotential curves and the family of field lines for the conservative vector field F = x i - yj . Sketch at least four members of each family.
سؤال
Evaluate the integral <strong>Evaluate the integral   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).</strong> A)   B)   C) 8 D) 11 E)   <div style=padding-top: 35px> ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).

A) <strong>Evaluate the integral   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).</strong> A)   B)   C) 8 D) 11 E)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).</strong> A)   B)   C) 8 D) 11 E)   <div style=padding-top: 35px>
C) 8
D) 11
E) <strong>Evaluate the integral   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).</strong> A)   B)   C) 8 D) 11 E)   <div style=padding-top: 35px>
سؤال
Use a line integral to find the mass of a wire running along the curve y = <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.

A) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
B) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
C) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
D) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
E) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> + <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
سؤال
Evaluate the line integral <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> along the straight line from (1, 2, -1) to (3, 2, 5).

A) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Evaluate the line integral <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)   <div style=padding-top: 35px> along the first octant part of y = <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)   <div style=padding-top: 35px> , z + y = 1 from (0, 0, 1) to (1, 1, 0).

A) <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)   <div style=padding-top: 35px>
B) <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)   <div style=padding-top: 35px>
C) <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)   <div style=padding-top: 35px>
D) 18
E) <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)   <div style=padding-top: 35px>
سؤال
Evaluate the line integral <strong>Evaluate the line integral   where C is the curve y = x, z = 1 +   , from (-1, -1, 2) to (1, 1, 2).</strong> A) 2 B) 1 C) 0 D) -1 E) -2 <div style=padding-top: 35px> where C is the curve y = x, z = 1 + <strong>Evaluate the line integral   where C is the curve y = x, z = 1 +   , from (-1, -1, 2) to (1, 1, 2).</strong> A) 2 B) 1 C) 0 D) -1 E) -2 <div style=padding-top: 35px> , from (-1, -1, 2) to (1, 1, 2).

A) 2
B) 1
C) 0
D) -1
E) -2
سؤال
Evaluate the line integral <strong>Evaluate the line integral   ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).</strong> A)   B)   C) 6 D)   E) 5 <div style=padding-top: 35px> ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).

A) <strong>Evaluate the line integral   ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).</strong> A)   B)   C) 6 D)   E) 5 <div style=padding-top: 35px>
B) <strong>Evaluate the line integral   ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).</strong> A)   B)   C) 6 D)   E) 5 <div style=padding-top: 35px>
C) 6
D) <strong>Evaluate the line integral   ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).</strong> A)   B)   C) 6 D)   E) 5 <div style=padding-top: 35px>
E) 5
سؤال
Find the integral <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> ds, where C is the first octant portion of the curve of intersection of the cylinder x2 + (y - 1)2 = 1 and the plane x + z = 1.

A) <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> (1 - 2 <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> )
B) <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> (1 - 2 <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> )
C) <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> (2 <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> - 1)
D) <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> (2 <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 <div style=padding-top: 35px> - 1)
E) 0
سؤال
Let C be the curve of intersection of the paraboloid z = 6 - x2 - y2 and the cone z =  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi  <div style=padding-top: 35px>  .Find the mass of the wire having the shape of the curve C if the line density function is given by  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi  <div style=padding-top: 35px>  (x, y, z) = z  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi  <div style=padding-top: 35px>  .

A)  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi  <div style=padding-top: 35px>
B) 81 π\pi
C) 16 π\pi
D)  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi  <div style=padding-top: 35px>
E) 8 π\pi
سؤال
Find  <strong>Find   ds along the curve r =   i +     j + t k, 0  \le  t  \le  l.</strong> A) 5e -3 B) e + 1 C) 2e - 1 D) e - 1 E) 2e <div style=padding-top: 35px>  ds along the curve r =  <strong>Find   ds along the curve r =   i +     j + t k, 0  \le  t  \le  l.</strong> A) 5e -3 B) e + 1 C) 2e - 1 D) e - 1 E) 2e <div style=padding-top: 35px>  i +  <strong>Find   ds along the curve r =   i +     j + t k, 0  \le  t  \le  l.</strong> A) 5e -3 B) e + 1 C) 2e - 1 D) e - 1 E) 2e <div style=padding-top: 35px>   <strong>Find   ds along the curve r =   i +     j + t k, 0  \le  t  \le  l.</strong> A) 5e -3 B) e + 1 C) 2e - 1 D) e - 1 E) 2e <div style=padding-top: 35px>  j + t k, 0 \le t \le l.

A) 5e -3
B) e + 1
C) 2e - 1
D) e - 1
E) 2e
سؤال
Find  <strong>Find   ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)</strong> A) \pi  B)   C) 2 D)   E)   <div style=padding-top: 35px>  ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)

A) π\pi
B)  <strong>Find   ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)</strong> A) \pi  B)   C) 2 D)   E)   <div style=padding-top: 35px>
C) 2
D)  <strong>Find   ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)</strong> A) \pi  B)   C) 2 D)   E)   <div style=padding-top: 35px>
E)  <strong>Find   ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)</strong> A) \pi  B)   C) 2 D)   E)   <div style=padding-top: 35px>
سؤال
Use the definition of the line integral to evaluate <strong>Use the definition of the line integral to evaluate   dx, where C is the graph of x + y = 5 with initial point (1, 4) and terminal point (0, 5).</strong> A) -24 B) -25 C) -26 D) -27 E) -23 <div style=padding-top: 35px> dx, where C is the graph of x + y = 5 with initial point (1, 4) and terminal point (0, 5).

A) -24
B) -25
C) -26
D) -27
E) -23
سؤال
Find the work done by the force field F(x, y, z) = x i + 3xy j - (x + z) k on a particle moving along the line segment from (1, 4, 2) to (0, 5, 1).

A) 2
B) 10
C) 12
D) 8
E) 16
سؤال
Find  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi  <div style=padding-top: 35px>  + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0 \le t \le π\pi .

A) 2 +  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi  <div style=padding-top: 35px>
B) 2 -  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi  <div style=padding-top: 35px>
C) 2 -  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi  <div style=padding-top: 35px>
D) 2 +  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi  <div style=padding-top: 35px>
E) 1 - π\pi
سؤال
If F = -y i + x j + z k, calculate  <strong>If F = -y i + x j + z k, calculate   where C is the straight line segment from(1, 0, 0) to (-1, 0,  \pi ).</strong> A)   B)   C) 1 D)   E)  \pi  <div style=padding-top: 35px>  where C is the straight line segment from(1, 0, 0) to (-1, 0, π\pi ).

A)  <strong>If F = -y i + x j + z k, calculate   where C is the straight line segment from(1, 0, 0) to (-1, 0,  \pi ).</strong> A)   B)   C) 1 D)   E)  \pi  <div style=padding-top: 35px>
B)  <strong>If F = -y i + x j + z k, calculate   where C is the straight line segment from(1, 0, 0) to (-1, 0,  \pi ).</strong> A)   B)   C) 1 D)   E)  \pi  <div style=padding-top: 35px>
C) 1
D)  <strong>If F = -y i + x j + z k, calculate   where C is the straight line segment from(1, 0, 0) to (-1, 0,  \pi ).</strong> A)   B)   C) 1 D)   E)  \pi  <div style=padding-top: 35px>
E) π\pi
سؤال
Let <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. <div style=padding-top: 35px> = <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. <div style=padding-top: 35px> , <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. <div style=padding-top: 35px> = <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. <div style=padding-top: 35px> and <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. <div style=padding-top: 35px> = <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. <div style=padding-top: 35px> be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.

A) S1 is simply connected.
B) S2 is not connected.
C) S1 is connected but not simply connected.
D) S3 is simply connected.
E) S3 is connected but not simply connected.
سؤال
Let F be a smooth conservative force field defined in 2-space with a potential function Let F be a smooth conservative force field defined in 2-space with a potential function   , and let C be the curve shown in the figure below. Find the work done by the force field F in moving a particle along the curve C from P to R given that φ(1,- 2) = -17, andφ(4, 1) = 3.  <div style=padding-top: 35px> , and let C be the curve shown in the figure below. Find the work done by the force field F in moving a particle along the curve C from P to R given that φ(1,- 2) = -17, andφ(4, 1) = 3. Let F be a smooth conservative force field defined in 2-space with a potential function   , and let C be the curve shown in the figure below. Find the work done by the force field F in moving a particle along the curve C from P to R given that φ(1,- 2) = -17, andφ(4, 1) = 3.  <div style=padding-top: 35px>
سؤال
How much work is required for the force field F = y i + 2x j to move an object along the upper part of the ellipse  <strong>How much work is required for the force field F = y i + 2x j to move an object along the upper part of the ellipse   from (3, 0) to (-3, 0)?</strong> A) 2 \pi  B) 9 \pi  C) -9 \pi  D) -2 \pi  E) 0 <div style=padding-top: 35px>  from (3, 0) to (-3, 0)?

A) 2 π\pi
B) 9 π\pi
C) -9 π\pi
D) -2 π\pi
E) 0
سؤال
Let F be a vector field such that F = ∇φ - y i for some smooth scalar function φ. Evaluate Let F be a vector field such that F = ∇φ - y i for some smooth scalar function φ. Evaluate   counterclockwise around the ellipse   +   = 1.<div style=padding-top: 35px> counterclockwise around the ellipse Let F be a vector field such that F = ∇φ - y i for some smooth scalar function φ. Evaluate   counterclockwise around the ellipse   +   = 1.<div style=padding-top: 35px> + Let F be a vector field such that F = ∇φ - y i for some smooth scalar function φ. Evaluate   counterclockwise around the ellipse   +   = 1.<div style=padding-top: 35px> = 1.
سؤال
Evaluate the line integral <strong>Evaluate the line integral   + x dy + z dz along the curve C from (1, 0, 1) to(-1, 2, 5) with parametrization   with  </strong> A) 9 B) 10 C) 11 D) 12 E) 8 <div style=padding-top: 35px> + x dy + z dz along the curve C from (1, 0, 1) to(-1, 2, 5) with parametrization <strong>Evaluate the line integral   + x dy + z dz along the curve C from (1, 0, 1) to(-1, 2, 5) with parametrization   with  </strong> A) 9 B) 10 C) 11 D) 12 E) 8 <div style=padding-top: 35px> with <strong>Evaluate the line integral   + x dy + z dz along the curve C from (1, 0, 1) to(-1, 2, 5) with parametrization   with  </strong> A) 9 B) 10 C) 11 D) 12 E) 8 <div style=padding-top: 35px>

A) 9
B) 10
C) 11
D) 12
E) 8
سؤال
Evaluate the line integral <strong>Evaluate the line integral   dx + 2y dy + (x + 2z) dz along the curve C with parametrization   with  </strong> A) 14 B) 15 C) 16 D) 17 E) 18 <div style=padding-top: 35px> dx + 2y dy + (x + 2z) dz along the curve C with parametrization <strong>Evaluate the line integral   dx + 2y dy + (x + 2z) dz along the curve C with parametrization   with  </strong> A) 14 B) 15 C) 16 D) 17 E) 18 <div style=padding-top: 35px> with <strong>Evaluate the line integral   dx + 2y dy + (x + 2z) dz along the curve C with parametrization   with  </strong> A) 14 B) 15 C) 16 D) 17 E) 18 <div style=padding-top: 35px>

A) 14
B) 15
C) 16
D) 17
E) 18
سؤال
Find the work done by the conservative force F = (2y + z) i + (2x + z) j + (x + y) k in moving a particle along the elliptical helix  <strong>Find the work done by the conservative force F = (2y + z) i + (2x + z) j + (x + y) k in moving a particle along the elliptical helix   from  </strong> A) 28 \pi  B) 39 \pi  C) 4 \pi  D) 7 \pi  E) 16 \pi  <div style=padding-top: 35px>  from  <strong>Find the work done by the conservative force F = (2y + z) i + (2x + z) j + (x + y) k in moving a particle along the elliptical helix   from  </strong> A) 28 \pi  B) 39 \pi  C) 4 \pi  D) 7 \pi  E) 16 \pi  <div style=padding-top: 35px>

A) 28 π\pi
B) 39 π\pi
C) 4 π\pi
D) 7 π\pi
E) 16 π\pi
سؤال
Evaluate the line integral  <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi  <div style=padding-top: 35px>  for F =  <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi  <div style=padding-top: 35px>  y, 0, zy  <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi  <div style=padding-top: 35px>  , where R is the helix  <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi  <div style=padding-top: 35px>   <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi  <div style=padding-top: 35px>   <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi  <div style=padding-top: 35px>   <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi  <div style=padding-top: 35px>

A) -20 π\pi
B) -17 π\pi
C) -18 π\pi
D) -19 π\pi
E) -21 π\pi
سؤال
Evaluate the line integral <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px> for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px> <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px> <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px> <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px>

A) <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px>
B) <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px>
C) <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px>
D) 0
E) <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <div style=padding-top: 35px>
سؤال
For what value of the constant A does the line integral I = <strong>For what value of the constant A does the line integral I =   , where   have the same value for all paths from the origin to the point   For that value of A, what is the value of the integral?</strong> A) A = 3, I = 6 B) A = 2, I = -2 C) A = 2, I = 1 D) A = 3, I = 1 E) A = 2, I = 2 <div style=padding-top: 35px> , where <strong>For what value of the constant A does the line integral I =   , where   have the same value for all paths from the origin to the point   For that value of A, what is the value of the integral?</strong> A) A = 3, I = 6 B) A = 2, I = -2 C) A = 2, I = 1 D) A = 3, I = 1 E) A = 2, I = 2 <div style=padding-top: 35px> have the same value for all paths from the origin to the point <strong>For what value of the constant A does the line integral I =   , where   have the same value for all paths from the origin to the point   For that value of A, what is the value of the integral?</strong> A) A = 3, I = 6 B) A = 2, I = -2 C) A = 2, I = 1 D) A = 3, I = 1 E) A = 2, I = 2 <div style=padding-top: 35px> For that value of A, what is the value of the integral?

A) A = 3, I = 6
B) A = 2, I = -2
C) A = 2, I = 1
D) A = 3, I = 1
E) A = 2, I = 2
سؤال
Use the fact that the field F = 2x  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>  sin(z) i -  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>   <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>  sin(z) j + (  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>   <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>  cos(z) + y) k is almost conservative (except for the last term) to help you evaluate  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>  around the circle  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>   <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>

A) 2 π\pi
B) π\pi
C)  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>
D)  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0 <div style=padding-top: 35px>
E) 0
سؤال
Use the fact that the field <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px> is almost conservative to help you evaluate <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px> along the curve <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px> from <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>

A) - <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
B) - <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
C) <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
D) - <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
E) <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
سؤال
Around what non-self-intersecting closed curves in the xy-plane will the line integral <strong>Around what non-self-intersecting closed curves in the xy-plane will the line integral   have a zero value?</strong> A) circles that pass through the origin B) circles that are centred at the origin C) curves bounding domains that contain the origin in their interiors D) curves bounding domains that do not contain the origin in their interiors E) any non-self-intersecting closed curve in the xy-plane <div style=padding-top: 35px> have a zero value?

A) circles that pass through the origin
B) circles that are centred at the origin
C) curves bounding domains that contain the origin in their interiors
D) curves bounding domains that do not contain the origin in their interiors
E) any non-self-intersecting closed curve in the xy-plane
سؤال
What conditions must a domain D in the xy-plane satisfy to ensure that the value of the line integral <strong>What conditions must a domain D in the xy-plane satisfy to ensure that the value of the line integral   +   dy should depend only on the initial and terminal points of the path C that lies in D?</strong> A) D must be simply connected and not contain the point (1, -1). B) D must be connected and not contain the point (1, -1). C) D must not contain the point (1, -1). D) D must be simply connected and must contain the point (1, -1). E) D can be any domain in the xy-plane. <div style=padding-top: 35px> + <strong>What conditions must a domain D in the xy-plane satisfy to ensure that the value of the line integral   +   dy should depend only on the initial and terminal points of the path C that lies in D?</strong> A) D must be simply connected and not contain the point (1, -1). B) D must be connected and not contain the point (1, -1). C) D must not contain the point (1, -1). D) D must be simply connected and must contain the point (1, -1). E) D can be any domain in the xy-plane. <div style=padding-top: 35px> dy should depend only on the initial and terminal points of the path C that lies in D?

A) D must be simply connected and not contain the point (1, -1).
B) D must be connected and not contain the point (1, -1).
C) D must not contain the point (1, -1).
D) D must be simply connected and must contain the point (1, -1).
E) D can be any domain in the xy-plane.
سؤال
Evaluate the surface integral <strong>Evaluate the surface integral   , where S is the graph of z =   for  </strong> A) 2 B) 3 C) 4 D) 5 E) 1 <div style=padding-top: 35px> , where S is the graph of z = <strong>Evaluate the surface integral   , where S is the graph of z =   for  </strong> A) 2 B) 3 C) 4 D) 5 E) 1 <div style=padding-top: 35px> for <strong>Evaluate the surface integral   , where S is the graph of z =   for  </strong> A) 2 B) 3 C) 4 D) 5 E) 1 <div style=padding-top: 35px>

A) 2
B) 3
C) 4
D) 5
E) 1
سؤال
Find the area of the surface cut from the paraboloid  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units <div style=padding-top: 35px>  +  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units <div style=padding-top: 35px>  - z = 0 by the plane z = 2.

A)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units <div style=padding-top: 35px>  π\pi square units
B)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units <div style=padding-top: 35px>  π\pi square units
C)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units <div style=padding-top: 35px>  π\pi square units
D)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units <div style=padding-top: 35px>  π\pi square units
E)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units <div style=padding-top: 35px>  π\pi square units
سؤال
Evaluate the surface integral <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> where S is the portion of the plane z = 2x - 4y above the region bounded by y = 0 , x = 1 and x = 3y in the xy-plane.

A) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder whose walls are <strong>Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder whose walls are   and  </strong> A) 2 square units B) 3 square units C) 4 square units D) 6 square units E) 1 square unit <div style=padding-top: 35px> and <strong>Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder whose walls are   and  </strong> A) 2 square units B) 3 square units C) 4 square units D) 6 square units E) 1 square unit <div style=padding-top: 35px>

A) 2 square units
B) 3 square units
C) 4 square units
D) 6 square units
E) 1 square unit
سؤال
Evaluate the surface integral <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px> where S is the portion of the plane z = 2x - 4y above the region bounded by y = 0 , x = 1 and x = 3y in the xy-plane.

A) - <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
B) - <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
D) - <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)   <div style=padding-top: 35px>
سؤال
Find the area of the ellipse cut from the plane z = cx by the cylinder  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units <div style=padding-top: 35px>  (c is constant.)

A) π\pi  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units <div style=padding-top: 35px>  square units
B) π\pi  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units <div style=padding-top: 35px>  square units
C) 2 π\pi  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units <div style=padding-top: 35px>  square units
D)  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units <div style=padding-top: 35px>  square units
E)  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units <div style=padding-top: 35px>   <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units <div style=padding-top: 35px>  square units
سؤال
Evaluate the surface integral  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi  <div style=padding-top: 35px>  where S is the portion of the plane x + y + z = 1 inside the cylinder x2 + y2 = 1

A)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi  <div style=padding-top: 35px>  π\pi
B)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi  <div style=padding-top: 35px>  π\pi
C)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi  <div style=padding-top: 35px>  π\pi
D)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi  <div style=padding-top: 35px>  π\pi
E)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi  <div style=padding-top: 35px>  π\pi
سؤال
Evaluate the surface integral <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> , where S is the portion of the plane <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> above the region R bounded by <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> and <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> in the xy-plane.

A) <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
B) - <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
C) <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
D) - <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
E) - <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
سؤال
Find <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> dS, where S is the part of the paraboloid <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> that lies above the ring <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> in the xy-plane.

A) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> (25 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> + 1)
B) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> (391 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> + 1)
C) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> (391 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> - 25 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> )
D) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> (391 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> - 25 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> )
E) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> (1235 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> - 5 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) <div style=padding-top: 35px> )
سؤال
Evaluate the surface integral <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> where S is the entire surface x + y + z = 1 lying in the first octant.

A) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Find the area of the part of the surface <strong>Find the area of the part of the surface   - 2 ln x +   y - z = 0 inside the prism bounded by the planes x = 1, x = 2, y = 0, and y = 1.</strong> A) 2 + 2 ln 2 square units B) 3 + 2 ln 2 square units C) 4 + ln 2 square units D) 5 + 2 ln 2 square units E)   + ln 2 square units <div style=padding-top: 35px> - 2 ln x + <strong>Find the area of the part of the surface   - 2 ln x +   y - z = 0 inside the prism bounded by the planes x = 1, x = 2, y = 0, and y = 1.</strong> A) 2 + 2 ln 2 square units B) 3 + 2 ln 2 square units C) 4 + ln 2 square units D) 5 + 2 ln 2 square units E)   + ln 2 square units <div style=padding-top: 35px> y - z = 0 inside the prism bounded by the planes x = 1, x = 2, y = 0, and y = 1.

A) 2 + 2 ln 2 square units
B) 3 + 2 ln 2 square units
C) 4 + ln 2 square units
D) 5 + 2 ln 2 square units
E) <strong>Find the area of the part of the surface   - 2 ln x +   y - z = 0 inside the prism bounded by the planes x = 1, x = 2, y = 0, and y = 1.</strong> A) 2 + 2 ln 2 square units B) 3 + 2 ln 2 square units C) 4 + ln 2 square units D) 5 + 2 ln 2 square units E)   + ln 2 square units <div style=padding-top: 35px> + ln 2 square units
سؤال
Evaluate the surface integral <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px> where S is the portion of the cone <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px> above the quarter disk <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px> in the xy-plane.

A) <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
B) <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
C) <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
D) <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
E) 0
سؤال
Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.

A) 8 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6   <div style=padding-top: 35px>
B) 9 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6   <div style=padding-top: 35px>
C) 10 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6   <div style=padding-top: 35px>
D) 11 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6   <div style=padding-top: 35px>
E) 6 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6   <div style=padding-top: 35px>
سؤال
Integrate g(x, y, z) = x2y2z2 over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.

A) <strong>Integrate g(x, y, z) = x<sup>2</sup>y<sup>2</sup>z<sup>2</sup> over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.</strong> A)   (ab + ac + bc) B)   (ab + ac + bc) C)   (ab + ac + bc) D)   (ab + ac + bc) E) abc(ab + ac + bc) <div style=padding-top: 35px> (ab + ac + bc)
B) <strong>Integrate g(x, y, z) = x<sup>2</sup>y<sup>2</sup>z<sup>2</sup> over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.</strong> A)   (ab + ac + bc) B)   (ab + ac + bc) C)   (ab + ac + bc) D)   (ab + ac + bc) E) abc(ab + ac + bc) <div style=padding-top: 35px> (ab + ac + bc)
C) <strong>Integrate g(x, y, z) = x<sup>2</sup>y<sup>2</sup>z<sup>2</sup> over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.</strong> A)   (ab + ac + bc) B)   (ab + ac + bc) C)   (ab + ac + bc) D)   (ab + ac + bc) E) abc(ab + ac + bc) <div style=padding-top: 35px> (ab + ac + bc)
D) <strong>Integrate g(x, y, z) = x<sup>2</sup>y<sup>2</sup>z<sup>2</sup> over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.</strong> A)   (ab + ac + bc) B)   (ab + ac + bc) C)   (ab + ac + bc) D)   (ab + ac + bc) E) abc(ab + ac + bc) <div style=padding-top: 35px> (ab + ac + bc)
E) abc(ab + ac + bc)
سؤال
Find the value of the positive constant real number a such that the area of the part of the plane <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> inside the elliptic paraboloid z = 3x2 + ay2 is equal to <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> square units.

A) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Find the area element at a point r (θ, φ) on the parametric surface Find the area element at a point r (θ, φ) on the parametric surface   ,   .<div style=padding-top: 35px> , Find the area element at a point r (θ, φ) on the parametric surface   ,   .<div style=padding-top: 35px> .
سؤال
Evaluate  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>  where S is the part of the paraboloid 2x = 8 -  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>  -  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>  lying between the planes  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>

A) 2 π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>
B) 2 π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>
C) 2 π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>
D) π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>
E) π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi    <div style=padding-top: 35px>
سؤال
Find the surface area of the part of the cylinder x2 + y2 = 2y that lies in the first octant and under the paraboloid  <strong>Find the surface area of the part of the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y that lies in the first octant and under the paraboloid  </strong> A)  \pi  square units B) 2 \pi  square units C) 3 \pi  square units D) 4 \pi  square units E) 6 \pi  square units <div style=padding-top: 35px>

A) π\pi square units
B) 2 π\pi square units
C) 3 π\pi square units
D) 4 π\pi square units
E) 6 π\pi square units
سؤال
Find the surface area of the part of the sphere x2 + y2 + z2 = 36 between the planes z = 1 and z = 5.

A) 12 π\pi square units
B) 288 π\pi square units
C) 48 π\pi square units
D) 96 π\pi square units
E) 144 π\pi square units
سؤال
Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = ( <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   <div style=padding-top: 35px> - 4 <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   <div style=padding-top: 35px> - <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   <div style=padding-top: 35px> ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , - <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   <div style=padding-top: 35px> ).

A) ± <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   <div style=padding-top: 35px>
B) ± (- 1 , 0 ,0)
C) ± <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   <div style=padding-top: 35px>
D) ± <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   <div style=padding-top: 35px>
E) ± <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   <div style=padding-top: 35px>
سؤال
Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.

A) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>

A) <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
B) <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
C) <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
D) <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
E) 0
سؤال
Compute the flux of F = <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   <div style=padding-top: 35px> upward through the the part of the cone <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   <div style=padding-top: 35px> = <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   <div style=padding-top: 35px> + <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   <div style=padding-top: 35px> lying inside the first octant of cylinder <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   <div style=padding-top: 35px>

A) 1
B) 2
C) 4
D) <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   <div style=padding-top: 35px>
E) <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   <div style=padding-top: 35px>
سؤال
Compute the flux of F = 2x i - <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px> j + (z - 2x + 2y) k upward through the part of the plane <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px> in the first octant of 3-space.

A) <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
B) <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
C) <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
D) <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0 <div style=padding-top: 35px>
E) 0
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/90
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 16: Vector Fields
1
Find the gradient vector field of f(x, y) = ln ( <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j + 3y).

A) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j j
B) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j j
C) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j j
D) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j j
E) <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j i + <strong>Find the gradient vector field of f(x, y) = ln (   + 3y).</strong> A)   i +   j B)   i +   j C)   i +   j D)   i +   j E)   i +   j j
  i +   j i +   i +   j j
2
Find the gradient vector field <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k f(x,y) of f(x, y) = <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k .

A) - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k i - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k j - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k k
B) <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k i + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k j + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k k
C) <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k i + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k j + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k k
D) <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k i + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k j + <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k k
E) - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k i - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k j - <strong>Find the gradient vector field   f(x,y) of f(x, y) =   .</strong> A) -   i -   j -   k B)   i +   j +   k C)   i +   j +   k D)   i +   j +   k E) -   i -   j -   k k
  i +   j +   k i +   i +   j +   k j +   i +   j +   k k
3
Describe the streamlines of the given velocity field v(x, y, z) = - yi + xj.

A) concentric circles centred on the x-axis in planes perpendicular to the x-axis
B) concentric circles centred on the y-axis in planes perpendicular to the y-axis
C) concentric circles centred on the z-axis in planes perpendicular to the z-axis
D) hyperbolas in planes perpendicular to the z-axis
E) parabolas in planes perpendicular to the z-axis
concentric circles centred on the z-axis in planes perpendicular to the z-axis
4
Show that r(t) = Show that r(t) =   i + 2t j +   k for t ≠ 0 is a streamline for the velocity vector field   . i + 2t j + Show that r(t) =   i + 2t j +   k for t ≠ 0 is a streamline for the velocity vector field   . k for t ≠ 0 is a streamline for the velocity vector field Show that r(t) =   i + 2t j +   k for t ≠ 0 is a streamline for the velocity vector field   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
5
Find the family of field lines of the plane polar field F(r, θ\theta ) = 2  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta   + θ\theta  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta   .

A) r = C θ\theta
B) r =  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta   + C
C) r = C  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta
D) r = C  <strong>Find the family of field lines of the plane polar field F(r,  \theta ) = 2   +  \theta    .</strong> A) r = C \theta  B) r =   + C C) r = C   D) r = C   E) r = ln  \theta
E) r = ln θ\theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find parametric equations of the streamline of the velocity field v(x, y, z) = y i - y j + y k that passes through the point (2, -3, -4).

A) x = 2 + t, y = -3 - t, z = -4 + t
B) x = 2 + t, y = -3 + t, z = -4 + t
C) x = 2 + t, y = -3 - t, z = -4 - t
D) x = 2 + t, y = 3 - t, z = 4 + t
E) x = 2t, y = -3t, z = -4t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find a vector parametric equation of the field line of the vector field F(x, y, z) = -y i + x j + k that passes through the point (2, 0, 0).

A) r = 2 cos t i + 2 sin t j - t k
B) r = 2 cos t i + 2 sin t j + t k
C) r = 2 cos t i - 2 sin t j + t k
D) r = cos t i + sin t j + t k
E) r = 2 cos t i + 2 sin t j
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
8
Define carefully what is meant by: The function V(x,y) is a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous system associated with the vector field F = P(x,y) i + Q(j, x,y).Assume that P and Q have continuous partial derivatives in D.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
9
The function V(x,y) = 3 The function V(x,y) = 3   +3xy + 5   is a Liapunov function for the autonomous system associated with the vector field F = (y -7x) i + (3x - 5y) j in any domain D containing the fixed point at the origin. +3xy + 5 The function V(x,y) = 3   +3xy + 5   is a Liapunov function for the autonomous system associated with the vector field F = (y -7x) i + (3x - 5y) j in any domain D containing the fixed point at the origin. is a Liapunov function for the autonomous system associated with the vector field F = (y -7x) i + (3x - 5y) j in any domain D containing the fixed point at the origin.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
10
Use a suitable Liapunov function to show that the fixed point at the origin for the autonomous system Use a suitable Liapunov function to show that the fixed point at the origin for the autonomous system   is at least stable. is at least stable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
11
Use the Liapunov function V(x,y) = Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j. ( Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j. + Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j. ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j. ) i + (x - y Use the Liapunov function V(x,y) =   (   +   ) to determine the stability of the fixed point at the origin of an autonomous system associated with the vector field F = (- y - x   ) i + (x - y   ) j. ) j.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
12
Show that the fixed point at the origin for the autonomous system Show that the fixed point at the origin for the autonomous system   is unstable. is unstable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
13
The Liapunov function V(x,y) = 2 The Liapunov function V(x,y) = 2   - xy + 3   is suitable to confirm that the fixed point at the origin for the autonomous system   is at least stable. - xy + 3 The Liapunov function V(x,y) = 2   - xy + 3   is suitable to confirm that the fixed point at the origin for the autonomous system   is at least stable. is suitable to confirm that the fixed point at the origin for the autonomous system The Liapunov function V(x,y) = 2   - xy + 3   is suitable to confirm that the fixed point at the origin for the autonomous system   is at least stable. is at least stable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
14
Let V(x , y) = A <strong>Let V(x , y) = A   + B   , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system   .Find A and B if the derivative of V along the trajectories of the system is equal to -   .Is the origin stable, asymptotically stable, or unstable?</strong> A) A = 2, B = -3; asymptotically stable B) A = -2, B = -3; unstable C) A =2, B = 3; unstable D) A = -2, B = 3; stable E) A = 2, B = 3; asymptotically stable + B <strong>Let V(x , y) = A   + B   , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system   .Find A and B if the derivative of V along the trajectories of the system is equal to -   .Is the origin stable, asymptotically stable, or unstable?</strong> A) A = 2, B = -3; asymptotically stable B) A = -2, B = -3; unstable C) A =2, B = 3; unstable D) A = -2, B = 3; stable E) A = 2, B = 3; asymptotically stable , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system <strong>Let V(x , y) = A   + B   , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system   .Find A and B if the derivative of V along the trajectories of the system is equal to -   .Is the origin stable, asymptotically stable, or unstable?</strong> A) A = 2, B = -3; asymptotically stable B) A = -2, B = -3; unstable C) A =2, B = 3; unstable D) A = -2, B = 3; stable E) A = 2, B = 3; asymptotically stable .Find A and B if the derivative of V along the trajectories of the system is equal to - <strong>Let V(x , y) = A   + B   , where A and B are constant real numbers, be a Liapunov function in a domain D (containing the fixed point at the origin) for the autonomous non-linear system   .Find A and B if the derivative of V along the trajectories of the system is equal to -   .Is the origin stable, asymptotically stable, or unstable?</strong> A) A = 2, B = -3; asymptotically stable B) A = -2, B = -3; unstable C) A =2, B = 3; unstable D) A = -2, B = 3; stable E) A = 2, B = 3; asymptotically stable .Is the origin stable, asymptotically stable, or unstable?

A) A = 2, B = -3; asymptotically stable
B) A = -2, B = -3; unstable
C) A =2, B = 3; unstable
D) A = -2, B = 3; stable
E) A = 2, B = 3; asymptotically stable
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
15
Is F (x,y) = (3 <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. y + 2x <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. + 1) i + ( <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. + 2 <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative. y + 1) j conservative? If so, find a potential for it.

A) <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative.
B) <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative.
C) <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative.
D) <strong>Is F (x,y) = (3   y + 2x   + 1) i + (   + 2   y + 1) j conservative? If so, find a potential for it.</strong> A)   B)   C)   D)   E) No, it is not conservative.
E) No, it is not conservative.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
16
Is F (x,y,z) = 6xy sin(2z) i + 3 <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.

A) yes, <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. (x,y) = 3 <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. y sin(2z) + C
B) yes, 11ee7ba1_26b3_e973_ae82_2f72847b9867_TB9661_11 (x,y) = 3 <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. y cos(2z) + C
C) yes, 11ee7ba1_26b3_e973_ae82_2f72847b9867_TB9661_11 (x,y) = 6xy sin(2z) + C
D) yes, 11ee7ba1_26b3_e973_ae82_2f72847b9867_TB9661_11 (x,y) = 3x <strong>Is F (x,y,z) = 6xy sin(2z) i + 3   sin(2z) j - 6 xy cos(2z) k conservative? If so, find a potential for it.</strong> A) yes,   (x,y) = 3   y sin(2z) + C B) yes,   (x,y) = 3   y cos(2z) + C C) yes,   (x,y) = 6xy sin(2z) + C D) yes,   (x,y) = 3x   sin(2z) + C E) No, it is not conservative. sin(2z) + C
E) No, it is not conservative.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
17
An equipotential surface of a conservative vector field F is given by <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   + ln( <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)   ) = 12 for y, z > 0.Find F.

A) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)
B) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)
C) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)
D) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)
E) <strong>An equipotential surface of a conservative vector field F is given by   + ln(   ) = 12 for y, z > 0.Find F.</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
18
 <strong>  For what values of the constants A, B, and C is F conservative?</strong> A) A = 2, B = - \pi , C = 1 B) A = 3, B = - \pi , C = -1 C) A = 3, B = -2, C = -1 D) A = 2, B =  \pi , C = 2 E) There are no values of A, B, and C that will make F conservative.  For what values of the constants A, B, and C is F conservative?

A) A = 2, B = - π\pi , C = 1
B) A = 3, B = - π\pi , C = -1
C) A = 3, B = -2, C = -1
D) A = 2, B = π\pi , C = 2
E) There are no values of A, B, and C that will make F conservative.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
19
The gradient of a scalar field  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  expressed in terms of polar coordinates [r, θ\theta ] in the plane is <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  (r, θ\theta ) =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  .  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  Use the result above to find the necessary condition for the vector field F(r, θ\theta ) = P(r, θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  + Q(r, θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  to be conservative.

A)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r
B)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  = r  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r
C)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  = -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r
D)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  - r  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  = Q
E)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the necessary condition for the vector field F(r, \theta  ) = P(r, \theta  )   + Q(r, \theta  )   to be conservative.</strong> A)   =   B)   = r   C)   = -     D)   - r   = Q E)   -   = r  = r
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the equipotential surfaces of the conservative field F(x,y,z) = <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C (i + x j + 2x k).

A) x <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C = C
B) x <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C = C
C) <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C = C
D) x <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C = C
E) y <strong>Find the equipotential surfaces of the conservative field F(x,y,z) =   (i + x j + 2x k).</strong> A) x   = C B) x   = C C)     = C D) x   = C E) y   = C = C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
21
(a)In terms of polar coordinates r and θ\theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j.
(b) In terms of polar coordinates r and θ\theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.

A) (a) radial lines θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =    (b) circles r =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =
B) (a) circles r =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =    (b) radial lines θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =
C) (a) circles r =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =    sin( θ\theta ) (b) circles r =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =    cos( θ\theta )
D) (a) lines r cos θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =    (b) lines r sin θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =
E) (a) lines r cos θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =    (b) radial lines θ\theta =  <strong>(a)In terms of polar coordinates r and  \theta , describe the field lines of the conservative plane vector field F(x,y) = x i + y j. (b) In terms of polar coordinates r and  \theta , describe the equipotential curves of the conservative plane vector field F(x,y) = x i + y j.</strong> A) (a) radial lines  \theta  =   (b) circles r =   B) (a) circles r =   (b) radial lines  \theta  =   C) (a) circles r =   sin( \theta ) (b) circles r =   cos( \theta ) D) (a) lines r cos  \theta  =   (b) lines r sin  \theta  =   E) (a) lines r cos  \theta  =   (b) radial lines  \theta  =
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
22
Which of the following three vector fields is conservative?
F = (4xz + 4 <strong>Which of the following three vector fields is conservative? F = (4xz + 4   ) i + (xy +   ) j + (2yz + 2   ) k, G = 7xy j H = F + G</strong> A) only F B) only G C) only H D) only F and G E) All three are conservative. ) i + (xy + <strong>Which of the following three vector fields is conservative? F = (4xz + 4   ) i + (xy +   ) j + (2yz + 2   ) k, G = 7xy j H = F + G</strong> A) only F B) only G C) only H D) only F and G E) All three are conservative. ) j + (2yz + 2 <strong>Which of the following three vector fields is conservative? F = (4xz + 4   ) i + (xy +   ) j + (2yz + 2   ) k, G = 7xy j H = F + G</strong> A) only F B) only G C) only H D) only F and G E) All three are conservative. ) k,
G = 7xy j
H = F + G

A) only F
B) only G
C) only H
D) only F and G
E) All three are conservative.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
23
Let F = <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) i + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) j + K <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) k. For what value of the constant K is F conservative?
If K has that value, find the family of equipotential surfaces of F.

A) K = -1, z = C( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) )
B) K = 1, <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) = C( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) )
C) K = -1, z ( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) ) = C
D) K = -2, <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) = C( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) )
E) K = 2, z = C( <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) + <strong>Let F =   i +   j + K   k. For what value of the constant K is F conservative? If K has that value, find the family of equipotential surfaces of F.</strong> A) K = -1, z = C(   +   ) B) K = 1,   = C(   +   ) C) K = -1, z (   +   ) = C D) K = -2,   = C(   +   ) E) K = 2, z = C(   +   ) )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
24
If F and G are plane conservative vector fields with potentials If F and G are plane conservative vector fields with potentials   and  , respectively, then the vector field H = 3F - 2G is also conservative with potential 3  - 2https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . and If F and G are plane conservative vector fields with potentials   and  , respectively, then the vector field H = 3F - 2G is also conservative with potential 3  - 2https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ ., respectively, then the vector field H = 3F - 2G is also conservative with potential 311ee7ba1_f0bb_6cc5_ae82_7109d7d2775a_TB9661_11 - 2https://d2lvgg3v3hfg70.cloudfront.net/TB9661/11ee7ba1_ff03_9556_ae82_45b7421486b4_TB9661_11.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
25
The gradient of a scalar field  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  expressed in terms of polar coordinates [r, θ\theta ] in the plane is <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  (r, θ\theta ) =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  .  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  Use the result above to find the constant real numbers a and b such that the vector field F =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  cos(2 θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  + a  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  sin(2 θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  is conservative.

A) a = 1 , b = -1
B) a = -1 , b = 2
C) a = -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  , b = 2
D) a = -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  , b = 2
E) a =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the result above to find the constant real numbers a and b such that the vector field F =   cos(2 \theta )   + a   sin(2 \theta )   is conservative.</strong> A) a = 1 , b = -1 B) a = -1 , b = 2 C) a = -   , b = 2 D) a = -   , b = 2 E) a =   , b = -2  , b = -2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
26
The gradient of a scalar field  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  expressed in terms of polar coordinates [r, θ\theta ] in the plane is <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  (r, θ\theta ) =  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  .  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C   <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  -  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  sin( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  .

A) 4  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  cos( θ\theta ) + C
B) - 8r sin( θ\theta ) + C
C)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C
D)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  cos( θ\theta ) + C
E)  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  +  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  cos( θ\theta )  <strong>The gradient of a scalar field   expressed in terms of polar coordinates [r,  \theta ] in the plane is  (r, \theta ) =     +   .     Use the above result to find a potential function for the conservative vector field (expressed in polar form) F = 3   cos( \theta )   -   sin( \theta )   .</strong> A) 4   cos( \theta ) + C B) - 8r sin( \theta ) + C C)   cos( \theta )   +   cos( \theta )   D)   cos( \theta ) + C E)   cos( \theta )   +   cos( \theta )   + C  + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
27
A potential function of a vector field F is given by  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )  , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F.
Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )  .

A) r sin(2 θ\theta ) + r cos(2 θ\theta )
B) r sin(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )  + r cos(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )
C) r sin(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )  - r cos(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )
D) r sin(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )  +  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )  r cos(2 θ\theta )  <strong>A potential function of a vector field F is given by    , where (r , θ) are the polar coordinates and C is an arbitrary constant. Find F. Hint: The gradient of g(r , θ) is given by ∇g(r , θ) =       . </strong> A) r sin(2 \theta ) + r cos(2 \theta ) B) r sin(2 \theta )   + r cos(2 \theta )   C) r sin(2 \theta )   - r cos(2 \theta )   D) r sin(2 \theta )   +   r cos(2 \theta )   E) r sin(2 \theta ) - r cos(2 \theta )
E) r sin(2 θ\theta ) - r cos(2 θ\theta )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
28
Describe the family of equipotential curves and the family of field lines for the conservative vector field F = x i - yj . Sketch at least four members of each family.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
29
Evaluate the integral <strong>Evaluate the integral   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).</strong> A)   B)   C) 8 D) 11 E)   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).

A) <strong>Evaluate the integral   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).</strong> A)   B)   C) 8 D) 11 E)
B) <strong>Evaluate the integral   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).</strong> A)   B)   C) 8 D) 11 E)
C) 8
D) 11
E) <strong>Evaluate the integral   ds once around the square C in the xy-plane with vertices (± 1, 1) and (± 1, -1).</strong> A)   B)   C) 8 D) 11 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
30
Use a line integral to find the mass of a wire running along the curve y = <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.

A) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
B) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
C) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
D) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
E) <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   + <strong>Use a line integral to find the mass of a wire running along the curve y =   from (0, 0) to (1, 1) if the density (mass per unit length) of the wire at any point (x, y) is numerically equal to y.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
31
Evaluate the line integral <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)   along the straight line from (1, 2, -1) to (3, 2, 5).

A) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate the line integral   along the straight line from (1, 2, -1) to (3, 2, 5).</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
32
Evaluate the line integral <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)   along the first octant part of y = <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)   , z + y = 1 from (0, 0, 1) to (1, 1, 0).

A) <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)
B) <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)
C) <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)
D) 18
E) <strong>Evaluate the line integral   along the first octant part of y =   , z + y = 1 from (0, 0, 1) to (1, 1, 0).</strong> A)   B)   C)   D) 18 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
33
Evaluate the line integral <strong>Evaluate the line integral   where C is the curve y = x, z = 1 +   , from (-1, -1, 2) to (1, 1, 2).</strong> A) 2 B) 1 C) 0 D) -1 E) -2 where C is the curve y = x, z = 1 + <strong>Evaluate the line integral   where C is the curve y = x, z = 1 +   , from (-1, -1, 2) to (1, 1, 2).</strong> A) 2 B) 1 C) 0 D) -1 E) -2 , from (-1, -1, 2) to (1, 1, 2).

A) 2
B) 1
C) 0
D) -1
E) -2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
34
Evaluate the line integral <strong>Evaluate the line integral   ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).</strong> A)   B)   C) 6 D)   E) 5 ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).

A) <strong>Evaluate the line integral   ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).</strong> A)   B)   C) 6 D)   E) 5
B) <strong>Evaluate the line integral   ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).</strong> A)   B)   C) 6 D)   E) 5
C) 6
D) <strong>Evaluate the line integral   ds, where C is that part of the line of intersection of the two planes 4x - y - z = -1 and 2x - 3y + 2z = 2 from (0, 0, 1) to (1, 2, 3).</strong> A)   B)   C) 6 D)   E) 5
E) 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the integral <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 ds, where C is the first octant portion of the curve of intersection of the cylinder x2 + (y - 1)2 = 1 and the plane x + z = 1.

A) <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 (1 - 2 <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 )
B) <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 (1 - 2 <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 )
C) <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 (2 <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 - 1)
D) <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 (2 <strong>Find the integral   ds, where C is the first octant portion of the curve of intersection of the cylinder x<sup>2</sup> + (y - 1)<sup>2</sup> = 1 and the plane x + z = 1.</strong> A)   (1 - 2   ) B)   (1 - 2   ) C)   (2   - 1) D)   (2   - 1) E) 0 - 1)
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
36
Let C be the curve of intersection of the paraboloid z = 6 - x2 - y2 and the cone z =  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi   .Find the mass of the wire having the shape of the curve C if the line density function is given by  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi   (x, y, z) = z  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi   .

A)  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi
B) 81 π\pi
C) 16 π\pi
D)  <strong>Let C be the curve of intersection of the paraboloid z = 6 - x<sup>2</sup> - y<sup>2</sup> and the cone z =   .Find the mass of the wire having the shape of the curve C if the line density function is given by   (x, y, z) = z   .</strong> A)   B) 81 \pi  C) 16 \pi  D)   E) 8 \pi
E) 8 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find  <strong>Find   ds along the curve r =   i +     j + t k, 0  \le  t  \le  l.</strong> A) 5e -3 B) e + 1 C) 2e - 1 D) e - 1 E) 2e  ds along the curve r =  <strong>Find   ds along the curve r =   i +     j + t k, 0  \le  t  \le  l.</strong> A) 5e -3 B) e + 1 C) 2e - 1 D) e - 1 E) 2e  i +  <strong>Find   ds along the curve r =   i +     j + t k, 0  \le  t  \le  l.</strong> A) 5e -3 B) e + 1 C) 2e - 1 D) e - 1 E) 2e   <strong>Find   ds along the curve r =   i +     j + t k, 0  \le  t  \le  l.</strong> A) 5e -3 B) e + 1 C) 2e - 1 D) e - 1 E) 2e  j + t k, 0 \le t \le l.

A) 5e -3
B) e + 1
C) 2e - 1
D) e - 1
E) 2e
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find  <strong>Find   ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)</strong> A) \pi  B)   C) 2 D)   E)    ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)

A) π\pi
B)  <strong>Find   ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)</strong> A) \pi  B)   C) 2 D)   E)
C) 2
D)  <strong>Find   ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)</strong> A) \pi  B)   C) 2 D)   E)
E)  <strong>Find   ds along the entire line 3x + 4y = 10. (Hint: Use symmetry to replace the line with a horizontal line at the same distance from the origin.)</strong> A) \pi  B)   C) 2 D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
39
Use the definition of the line integral to evaluate <strong>Use the definition of the line integral to evaluate   dx, where C is the graph of x + y = 5 with initial point (1, 4) and terminal point (0, 5).</strong> A) -24 B) -25 C) -26 D) -27 E) -23 dx, where C is the graph of x + y = 5 with initial point (1, 4) and terminal point (0, 5).

A) -24
B) -25
C) -26
D) -27
E) -23
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the work done by the force field F(x, y, z) = x i + 3xy j - (x + z) k on a particle moving along the line segment from (1, 4, 2) to (0, 5, 1).

A) 2
B) 10
C) 12
D) 8
E) 16
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0 \le t \le π\pi .

A) 2 +  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi
B) 2 -  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi
C) 2 -  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi
D) 2 +  <strong>Find   + z dy + x dz where C is part of the helix r(t) = sin t i + cos t j + t k, 0  \le  t  \le   \pi .</strong> A) 2 +   B) 2 -   C) 2 -   D) 2 +   E) 1 - \pi
E) 1 - π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
42
If F = -y i + x j + z k, calculate  <strong>If F = -y i + x j + z k, calculate   where C is the straight line segment from(1, 0, 0) to (-1, 0,  \pi ).</strong> A)   B)   C) 1 D)   E)  \pi   where C is the straight line segment from(1, 0, 0) to (-1, 0, π\pi ).

A)  <strong>If F = -y i + x j + z k, calculate   where C is the straight line segment from(1, 0, 0) to (-1, 0,  \pi ).</strong> A)   B)   C) 1 D)   E)  \pi
B)  <strong>If F = -y i + x j + z k, calculate   where C is the straight line segment from(1, 0, 0) to (-1, 0,  \pi ).</strong> A)   B)   C) 1 D)   E)  \pi
C) 1
D)  <strong>If F = -y i + x j + z k, calculate   where C is the straight line segment from(1, 0, 0) to (-1, 0,  \pi ).</strong> A)   B)   C) 1 D)   E)  \pi
E) π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
43
Let <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. = <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. , <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. = <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. and <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. = <strong>Let   =   ,   =   and   =   be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.</strong> A) S<sub>1</sub> is simply connected. B) S<sub>2</sub> is not connected. C) S<sub>1</sub> is connected but not simply connected. D) S<sub>3</sub> is simply connected. E) S<sub>3</sub> is connected but not simply connected. be sets of points in 3-space. Determine whether the set is a connected or a simply connected set.

A) S1 is simply connected.
B) S2 is not connected.
C) S1 is connected but not simply connected.
D) S3 is simply connected.
E) S3 is connected but not simply connected.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
44
Let F be a smooth conservative force field defined in 2-space with a potential function Let F be a smooth conservative force field defined in 2-space with a potential function   , and let C be the curve shown in the figure below. Find the work done by the force field F in moving a particle along the curve C from P to R given that φ(1,- 2) = -17, andφ(4, 1) = 3.  , and let C be the curve shown in the figure below. Find the work done by the force field F in moving a particle along the curve C from P to R given that φ(1,- 2) = -17, andφ(4, 1) = 3. Let F be a smooth conservative force field defined in 2-space with a potential function   , and let C be the curve shown in the figure below. Find the work done by the force field F in moving a particle along the curve C from P to R given that φ(1,- 2) = -17, andφ(4, 1) = 3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
45
How much work is required for the force field F = y i + 2x j to move an object along the upper part of the ellipse  <strong>How much work is required for the force field F = y i + 2x j to move an object along the upper part of the ellipse   from (3, 0) to (-3, 0)?</strong> A) 2 \pi  B) 9 \pi  C) -9 \pi  D) -2 \pi  E) 0  from (3, 0) to (-3, 0)?

A) 2 π\pi
B) 9 π\pi
C) -9 π\pi
D) -2 π\pi
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
46
Let F be a vector field such that F = ∇φ - y i for some smooth scalar function φ. Evaluate Let F be a vector field such that F = ∇φ - y i for some smooth scalar function φ. Evaluate   counterclockwise around the ellipse   +   = 1. counterclockwise around the ellipse Let F be a vector field such that F = ∇φ - y i for some smooth scalar function φ. Evaluate   counterclockwise around the ellipse   +   = 1. + Let F be a vector field such that F = ∇φ - y i for some smooth scalar function φ. Evaluate   counterclockwise around the ellipse   +   = 1. = 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
47
Evaluate the line integral <strong>Evaluate the line integral   + x dy + z dz along the curve C from (1, 0, 1) to(-1, 2, 5) with parametrization   with  </strong> A) 9 B) 10 C) 11 D) 12 E) 8 + x dy + z dz along the curve C from (1, 0, 1) to(-1, 2, 5) with parametrization <strong>Evaluate the line integral   + x dy + z dz along the curve C from (1, 0, 1) to(-1, 2, 5) with parametrization   with  </strong> A) 9 B) 10 C) 11 D) 12 E) 8 with <strong>Evaluate the line integral   + x dy + z dz along the curve C from (1, 0, 1) to(-1, 2, 5) with parametrization   with  </strong> A) 9 B) 10 C) 11 D) 12 E) 8

A) 9
B) 10
C) 11
D) 12
E) 8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
48
Evaluate the line integral <strong>Evaluate the line integral   dx + 2y dy + (x + 2z) dz along the curve C with parametrization   with  </strong> A) 14 B) 15 C) 16 D) 17 E) 18 dx + 2y dy + (x + 2z) dz along the curve C with parametrization <strong>Evaluate the line integral   dx + 2y dy + (x + 2z) dz along the curve C with parametrization   with  </strong> A) 14 B) 15 C) 16 D) 17 E) 18 with <strong>Evaluate the line integral   dx + 2y dy + (x + 2z) dz along the curve C with parametrization   with  </strong> A) 14 B) 15 C) 16 D) 17 E) 18

A) 14
B) 15
C) 16
D) 17
E) 18
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the work done by the conservative force F = (2y + z) i + (2x + z) j + (x + y) k in moving a particle along the elliptical helix  <strong>Find the work done by the conservative force F = (2y + z) i + (2x + z) j + (x + y) k in moving a particle along the elliptical helix   from  </strong> A) 28 \pi  B) 39 \pi  C) 4 \pi  D) 7 \pi  E) 16 \pi   from  <strong>Find the work done by the conservative force F = (2y + z) i + (2x + z) j + (x + y) k in moving a particle along the elliptical helix   from  </strong> A) 28 \pi  B) 39 \pi  C) 4 \pi  D) 7 \pi  E) 16 \pi

A) 28 π\pi
B) 39 π\pi
C) 4 π\pi
D) 7 π\pi
E) 16 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
50
Evaluate the line integral  <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi   for F =  <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi   y, 0, zy  <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi   , where R is the helix  <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi    <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi    <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi    <strong>Evaluate the line integral   for F =   y, 0, zy   , where R is the helix        </strong> A) -20 \pi  B) -17 \pi  C) -18 \pi  D) -19 \pi  E) -21 \pi

A) -20 π\pi
B) -17 π\pi
C) -18 π\pi
D) -19 π\pi
E) -21 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
51
Evaluate the line integral <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)   <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)

A) <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)
B) <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)
C) <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)
D) 0
E) <strong>Evaluate the line integral   for F = (2y + z) i + (2x + z) j + (x + y) k, where C is the curve        </strong> A)   B)   C)   D) 0 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
52
For what value of the constant A does the line integral I = <strong>For what value of the constant A does the line integral I =   , where   have the same value for all paths from the origin to the point   For that value of A, what is the value of the integral?</strong> A) A = 3, I = 6 B) A = 2, I = -2 C) A = 2, I = 1 D) A = 3, I = 1 E) A = 2, I = 2 , where <strong>For what value of the constant A does the line integral I =   , where   have the same value for all paths from the origin to the point   For that value of A, what is the value of the integral?</strong> A) A = 3, I = 6 B) A = 2, I = -2 C) A = 2, I = 1 D) A = 3, I = 1 E) A = 2, I = 2 have the same value for all paths from the origin to the point <strong>For what value of the constant A does the line integral I =   , where   have the same value for all paths from the origin to the point   For that value of A, what is the value of the integral?</strong> A) A = 3, I = 6 B) A = 2, I = -2 C) A = 2, I = 1 D) A = 3, I = 1 E) A = 2, I = 2 For that value of A, what is the value of the integral?

A) A = 3, I = 6
B) A = 2, I = -2
C) A = 2, I = 1
D) A = 3, I = 1
E) A = 2, I = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
53
Use the fact that the field F = 2x  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0  sin(z) i -  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0   <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0  sin(z) j + (  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0   <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0  cos(z) + y) k is almost conservative (except for the last term) to help you evaluate  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0  around the circle  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0   <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0

A) 2 π\pi
B) π\pi
C)  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0
D)  <strong>Use the fact that the field F = 2x   sin(z) i -     sin(z) j + (     cos(z) + y) k is almost conservative (except for the last term) to help you evaluate   around the circle    </strong> A) 2 \pi  B)  \pi  C)   D)   E) 0
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
54
Use the fact that the field <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   is almost conservative to help you evaluate <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   along the curve <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)   from <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)

A) - <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)
B) - <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)
C) <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)
D) - <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)
E) <strong>Use the fact that the field      is almost conservative to help you evaluate    along the curve       from      </strong> A) -   B) -   C)   D) -   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
55
Around what non-self-intersecting closed curves in the xy-plane will the line integral <strong>Around what non-self-intersecting closed curves in the xy-plane will the line integral   have a zero value?</strong> A) circles that pass through the origin B) circles that are centred at the origin C) curves bounding domains that contain the origin in their interiors D) curves bounding domains that do not contain the origin in their interiors E) any non-self-intersecting closed curve in the xy-plane have a zero value?

A) circles that pass through the origin
B) circles that are centred at the origin
C) curves bounding domains that contain the origin in their interiors
D) curves bounding domains that do not contain the origin in their interiors
E) any non-self-intersecting closed curve in the xy-plane
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
56
What conditions must a domain D in the xy-plane satisfy to ensure that the value of the line integral <strong>What conditions must a domain D in the xy-plane satisfy to ensure that the value of the line integral   +   dy should depend only on the initial and terminal points of the path C that lies in D?</strong> A) D must be simply connected and not contain the point (1, -1). B) D must be connected and not contain the point (1, -1). C) D must not contain the point (1, -1). D) D must be simply connected and must contain the point (1, -1). E) D can be any domain in the xy-plane. + <strong>What conditions must a domain D in the xy-plane satisfy to ensure that the value of the line integral   +   dy should depend only on the initial and terminal points of the path C that lies in D?</strong> A) D must be simply connected and not contain the point (1, -1). B) D must be connected and not contain the point (1, -1). C) D must not contain the point (1, -1). D) D must be simply connected and must contain the point (1, -1). E) D can be any domain in the xy-plane. dy should depend only on the initial and terminal points of the path C that lies in D?

A) D must be simply connected and not contain the point (1, -1).
B) D must be connected and not contain the point (1, -1).
C) D must not contain the point (1, -1).
D) D must be simply connected and must contain the point (1, -1).
E) D can be any domain in the xy-plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
57
Evaluate the surface integral <strong>Evaluate the surface integral   , where S is the graph of z =   for  </strong> A) 2 B) 3 C) 4 D) 5 E) 1 , where S is the graph of z = <strong>Evaluate the surface integral   , where S is the graph of z =   for  </strong> A) 2 B) 3 C) 4 D) 5 E) 1 for <strong>Evaluate the surface integral   , where S is the graph of z =   for  </strong> A) 2 B) 3 C) 4 D) 5 E) 1

A) 2
B) 3
C) 4
D) 5
E) 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
58
Find the area of the surface cut from the paraboloid  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units  +  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units  - z = 0 by the plane z = 2.

A)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units  π\pi square units
B)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units  π\pi square units
C)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units  π\pi square units
D)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units  π\pi square units
E)  <strong>Find the area of the surface cut from the paraboloid   +   - z = 0 by the plane z = 2.</strong> A)    \pi  square units B)    \pi  square units C)    \pi  square units D)    \pi  square units E)    \pi  square units  π\pi square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
59
Evaluate the surface integral <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)   where S is the portion of the plane z = 2x - 4y above the region bounded by y = 0 , x = 1 and x = 3y in the xy-plane.

A) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)
B) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)
C) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)
D) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)
E) <strong>Evaluate the surface integral      where S is the portion of the plane z = 2x - 4y  above the region bounded by y = 0 , x = 1   and  x = 3y  in the xy-plane. </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
60
Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder whose walls are <strong>Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder whose walls are   and  </strong> A) 2 square units B) 3 square units C) 4 square units D) 6 square units E) 1 square unit and <strong>Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder whose walls are   and  </strong> A) 2 square units B) 3 square units C) 4 square units D) 6 square units E) 1 square unit

A) 2 square units
B) 3 square units
C) 4 square units
D) 6 square units
E) 1 square unit
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
61
Evaluate the surface integral <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)   where S is the portion of the plane z = 2x - 4y above the region bounded by y = 0 , x = 1 and x = 3y in the xy-plane.

A) - <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)
B) - <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)
C) <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)
D) - <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)
E) <strong>Evaluate the surface integral     where S is the portion of the plane z = 2x - 4y    above the region bounded by y = 0 , x = 1   and  x = 3y   in the xy-plane. </strong> A) -   B) -   C)   D) -   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
62
Find the area of the ellipse cut from the plane z = cx by the cylinder  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units  (c is constant.)

A) π\pi  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units  square units
B) π\pi  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units  square units
C) 2 π\pi  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units  square units
D)  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units  square units
E)  <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units   <strong>Find the area of the ellipse cut from the plane z = cx by the cylinder   (c is constant.)</strong> A)  \pi   square units B)  \pi    square units C) 2 \pi    square units D)   square units E)     square units  square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
63
Evaluate the surface integral  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi   where S is the portion of the plane x + y + z = 1 inside the cylinder x2 + y2 = 1

A)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi   π\pi
B)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi   π\pi
C)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi   π\pi
D)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi   π\pi
E)  <strong>Evaluate the surface integral     where  S  is the portion of the plane  x + y + z = 1    inside the cylinder  x<sup>2</sup> + y<sup>2</sup> = 1 </strong> A)    \pi  B)    \pi  C)    \pi  D)    \pi  E)    \pi   π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
64
Evaluate the surface integral <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   , where S is the portion of the plane <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   above the region R bounded by <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   and <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -   in the xy-plane.

A) <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -
B) - <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -
C) <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -
D) - <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -
E) - <strong>Evaluate the surface integral   , where S is the portion of the plane   above the region R bounded by   and   in the xy-plane.</strong> A)   B) -   C)   D) -   E) -
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) dS, where S is the part of the paraboloid <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) that lies above the ring <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) in the xy-plane.

A) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) (25 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) + 1)
B) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) (391 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) + 1)
C) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) (391 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) - 25 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) )
D) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) (391 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) - 25 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) )
E) <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) (1235 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) - 5 <strong>Find   dS, where S is the part of the paraboloid   that lies above the ring   in the xy-plane.</strong> A)   (25   + 1) B)   (391   + 1) C)   (391   - 25   ) D)   (391   - 25   ) E)   (1235   - 5   ) )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
66
Evaluate the surface integral <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)   where S is the entire surface x + y + z = 1 lying in the first octant.

A) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate the surface integral      where  S  is the entire surface  x + y + z = 1    lying in the first octant.</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find the area of the part of the surface <strong>Find the area of the part of the surface   - 2 ln x +   y - z = 0 inside the prism bounded by the planes x = 1, x = 2, y = 0, and y = 1.</strong> A) 2 + 2 ln 2 square units B) 3 + 2 ln 2 square units C) 4 + ln 2 square units D) 5 + 2 ln 2 square units E)   + ln 2 square units - 2 ln x + <strong>Find the area of the part of the surface   - 2 ln x +   y - z = 0 inside the prism bounded by the planes x = 1, x = 2, y = 0, and y = 1.</strong> A) 2 + 2 ln 2 square units B) 3 + 2 ln 2 square units C) 4 + ln 2 square units D) 5 + 2 ln 2 square units E)   + ln 2 square units y - z = 0 inside the prism bounded by the planes x = 1, x = 2, y = 0, and y = 1.

A) 2 + 2 ln 2 square units
B) 3 + 2 ln 2 square units
C) 4 + ln 2 square units
D) 5 + 2 ln 2 square units
E) <strong>Find the area of the part of the surface   - 2 ln x +   y - z = 0 inside the prism bounded by the planes x = 1, x = 2, y = 0, and y = 1.</strong> A) 2 + 2 ln 2 square units B) 3 + 2 ln 2 square units C) 4 + ln 2 square units D) 5 + 2 ln 2 square units E)   + ln 2 square units + ln 2 square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
68
Evaluate the surface integral <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 where S is the portion of the cone <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 above the quarter disk <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0 in the xy-plane.

A) <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0
B) <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0
C) <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0
D) <strong>Evaluate the surface integral      where  S  is the portion of the cone       above the quarter disk      in the xy-plane. </strong> A)   B)   C)   D)   E) 0
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
69
Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.

A) 8 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6
B) 9 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6
C) 10 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6
D) 11 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6
E) 6 <strong>Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, and z = a.</strong> A) 8   B) 9   C) 10   D) 11   E) 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
70
Integrate g(x, y, z) = x2y2z2 over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.

A) <strong>Integrate g(x, y, z) = x<sup>2</sup>y<sup>2</sup>z<sup>2</sup> over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.</strong> A)   (ab + ac + bc) B)   (ab + ac + bc) C)   (ab + ac + bc) D)   (ab + ac + bc) E) abc(ab + ac + bc) (ab + ac + bc)
B) <strong>Integrate g(x, y, z) = x<sup>2</sup>y<sup>2</sup>z<sup>2</sup> over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.</strong> A)   (ab + ac + bc) B)   (ab + ac + bc) C)   (ab + ac + bc) D)   (ab + ac + bc) E) abc(ab + ac + bc) (ab + ac + bc)
C) <strong>Integrate g(x, y, z) = x<sup>2</sup>y<sup>2</sup>z<sup>2</sup> over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.</strong> A)   (ab + ac + bc) B)   (ab + ac + bc) C)   (ab + ac + bc) D)   (ab + ac + bc) E) abc(ab + ac + bc) (ab + ac + bc)
D) <strong>Integrate g(x, y, z) = x<sup>2</sup>y<sup>2</sup>z<sup>2</sup> over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.</strong> A)   (ab + ac + bc) B)   (ab + ac + bc) C)   (ab + ac + bc) D)   (ab + ac + bc) E) abc(ab + ac + bc) (ab + ac + bc)
E) abc(ab + ac + bc)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
71
Find the value of the positive constant real number a such that the area of the part of the plane <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   inside the elliptic paraboloid z = 3x2 + ay2 is equal to <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)   square units.

A) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)
B) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)
C) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)
D) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)
E) <strong>Find the value of the positive constant real number a such that the area of the part of the plane   inside the elliptic paraboloid z = 3x<sup>2</sup> + ay<sup>2</sup> is equal to   square units.</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the area element at a point r (θ, φ) on the parametric surface Find the area element at a point r (θ, φ) on the parametric surface   ,   . , Find the area element at a point r (θ, φ) on the parametric surface   ,   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
73
Evaluate  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi     where S is the part of the paraboloid 2x = 8 -  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi     -  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi     lying between the planes  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi

A) 2 π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi
B) 2 π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi
C) 2 π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi
D) π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi
E) π\pi  <strong>Evaluate   where S is the part of the paraboloid 2x = 8 -   -   lying between the planes  </strong> A) 2 \pi    B) 2 \pi    C) 2 \pi    D) \pi    E)  \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
74
Find the surface area of the part of the cylinder x2 + y2 = 2y that lies in the first octant and under the paraboloid  <strong>Find the surface area of the part of the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y that lies in the first octant and under the paraboloid  </strong> A)  \pi  square units B) 2 \pi  square units C) 3 \pi  square units D) 4 \pi  square units E) 6 \pi  square units

A) π\pi square units
B) 2 π\pi square units
C) 3 π\pi square units
D) 4 π\pi square units
E) 6 π\pi square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
75
Find the surface area of the part of the sphere x2 + y2 + z2 = 36 between the planes z = 1 and z = 5.

A) 12 π\pi square units
B) 288 π\pi square units
C) 48 π\pi square units
D) 96 π\pi square units
E) 144 π\pi square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
76
Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = ( <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   - 4 <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   - <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , - <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±   ).

A) ± <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±
B) ± (- 1 , 0 ,0)
C) ± <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±
D) ± <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±
E) ± <strong>Find two unit vectors orthogonal to the parametric surface S given by r (u, v) = (   - 4   -   ) i + 4v j + 2u k at the point on the surface corresponding to (u, v) = ( 3 , -   ).</strong> A) ±   B) ± (- 1 , 0 ,0) C) ±   D) ±   E) ±
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
77
Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.

A) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)
B) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)
C) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)
D) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)
E) <strong>Compute the flux of F = x i + y j + z k upward through the part of the plane x + y + z = 3 in the first octant of 3-space.</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
78
Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0

A) <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0
B) <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0
C) <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0
D) <strong>Compute the flux of F = x i + y j + z k outward through the whole surface of the tetrahedron bounded by the coordinate planes and the plane  </strong> A)   B)   C)   D)   E) 0
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
79
Compute the flux of F = <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   upward through the the part of the cone <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   = <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   + <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)   lying inside the first octant of cylinder <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)

A) 1
B) 2
C) 4
D) <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)
E) <strong>Compute the flux of F =   upward through the the part of the cone   =   +   lying inside the first octant of cylinder  </strong> A) 1 B) 2 C) 4 D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
80
Compute the flux of F = 2x i - <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0 j + (z - 2x + 2y) k upward through the part of the plane <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0 in the first octant of 3-space.

A) <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0
B) <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0
C) <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0
D) <strong>Compute the flux of F = 2x i -   j + (z - 2x + 2y) k upward through the part of the plane   in the first octant of 3-space.</strong> A)   B)   C)   D)   E) 0
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.