Deck 5: Exponential and Logarithmic Functions

ملء الشاشة (f)
exit full mode
سؤال
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (f1g1)(1)\left( f ^ { - 1 } \circ g ^ { - 1 } \right) ( 1 )

A)32
B)35
C)33
D)37
E)30
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Show that ff and gg are functions by using the definition of inverse functions. f(x)=1x,g(x)=1xf ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 1 } { x }

A) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x - 1
B) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x - 1 , g ( f ( x ) ) = x
C) f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
D) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x ^ { - 1 }
E) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x ^ { - 1 } , g ( f ( x ) ) = x
سؤال
Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions g1f1g ^ { - 1 } \circ f ^ { - 1 }

A) x22\frac { x - 2 } { 2 }
B) x+22\frac { x + 2 } { - 2 }
C) x22\frac { x - 2 } { - 2 }
D) (x+2)2\frac { - ( x + 2 ) } { 2 }
E) x+22\frac { x + 2 } { 2 }
سؤال
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x2,x2f ( x ) = | x - 2 | , x \leq 2

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function, f1(x)=2x,x0f ^ { - 1 } ( x ) = 2 - x , x \geq 0
C)Yes, ff has an inverse function, f1(x)=2x,x0f ^ { - 1 } ( x ) = - 2 - x , x \geq 0
D)Yes, ff has an inverse function, f1(x)=2+x,x0f ^ { - 1 } ( x ) = 2 + x , x \geq 0
E)Yes, ff has an inverse function, f1(x)=2+x,x0f ^ { - 1 } ( x ) = - 2 + x , x \geq 0
سؤال
Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions (gf)1(g\circ f)^{-1}

A) (x+2)2\frac { - ( x + 2 ) } { - 2 }
B) x+22\frac { - x + 2 } { 2 }
C) x22\frac { x - 2 } { 2 }
D) x22\frac { x - 2 } { - 2 }
E) x+22\frac { x + 2 } { 2 }
سؤال
Show that ff and gg are functions by using the definition of inverse functions. f(x)=5x+1,g(x)=x15f ( x ) = 5 x + 1 , g ( x ) = \frac { x - 1 } { 5 }

A) f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
B) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x ^ { - 1 } , g ( f ( x ) ) = x
C) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x ^ { - 1 }
D) f(g(x))=x+1,g(f(x))=xf ( g ( x ) ) = x + 1 , g ( f ( x ) ) = x
E) f(g(x))=x,g(f(x))=x+1f ( g ( x ) ) = x , g ( f ( x ) ) = x + 1
سؤال
Find the inverse function of the function f given by the set of ordered pairs. {(6,2),(5,3),(4,4),(3,5)}\{ ( 6,2 ) , ( 5,3 ) , ( 4,4 ) , ( 3,5 ) \}

A) f1={(2,6),(3,5),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,4 ) , ( 5,3 ) \}
B) f1={(2,6),(3,5),(4,4),(5,5)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,4 ) , ( 5,5 ) \}
C) f1={(2,6),(3,5),(4,2),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,2 ) , ( 5,3 ) \}
D) f1={(2,6),(3,3),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,3 ) , ( 4,4 ) , ( 5,3 ) \}
E) f1={(2,2),(3,5),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,2 ) , ( 3,5 ) , ( 4,4 ) , ( 5,3 ) \}
سؤال
Sketch the graphs of inverse functions f(x)=x52,f1(x)=x+25f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 } in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x

A)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>  x101f(x)321x421f1(x)101\begin{array} { l l r r } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 4 & - 2 & - 1 \\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
B)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>  x101f(x)321x321f1(x)121\begin{array} { l lrr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 2 & 1\end{array}
C)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>  x001f(x)321x321f1(x)101\begin{array} { l r rr } x & 0 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
D)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>  x101f(x)321x321f1(x)101\begin{array} { l l rr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
E)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>
x101f(x)321x321f1(x)121\begin{array}{llrr}x & -1 & 0 & -1 \\f(x) & -3 & -2 & -1 \\\\x & -3& 2& -1 \\f^{-1}(x) & -1 & -2 & 1\end{array}
سؤال
Find the inverse function informally f(x)=x5f ( x ) = x - 5 . Verify that f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x

A) f1(x)=x+1f ^ { - 1 } ( x ) = x + 1 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
C) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=x1f ^ { - 1 } ( f ( x ) ) = x - 1
D) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=x+1f \left( f ^ { - 1 } ( x ) \right) = x + 1 , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=x1f ^ { - 1 } ( f ( x ) ) = x ^ { - 1 }
سؤال
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (g1f1)(3)\left( g ^ { - 1 } \circ f ^ { - 1 } \right) ( - 3 )

A)1
B)0
C)3
D)4
E)2
سؤال
Find the inverse function of the function f given by the set of ordered pairs. {(1,4),(2,5),(3,6),(4,7)}\{ ( 1,4 ) , ( 2,5 ) , ( 3,6 ) , ( 4,7 ) \}

A) f1={(4,4),(5,2),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,4 ) , ( 5,2 ) , ( 6,3 ) , ( 7,4 ) \}
B) f1={(4,1),(5,5),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,5 ) , ( 6,3 ) , ( 7,4 ) \}
C) f1={(4,1),(5,2),(6,6),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,6 ) , ( 7,4 ) \}
D) f1={(4,1),(5,2),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,3 ) , ( 7,4 ) \}
E) f1={(4,1),(5,2),(6,3),(7,7)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,3 ) , ( 7,7 ) \}
سؤال
Find the inverse function informally f(x)=2xf ( x ) = 2 x . Verify that f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x

A) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=x1f \left( f ^ { - 1 } ( x ) \right) = x ^ { - 1 } , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=2xf \left( f ^ { - 1 } ( x ) \right) = 2 x , f1(f(x))=3xf ^ { - 1 } ( f ( x ) ) = 3 x
C) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=2xf ^ { - 1 } ( f ( x ) ) = 2 x
D) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=3xf \left( f ^ { - 1 } ( x ) \right) = 3 x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
سؤال
Use the graph of ff to complete the table and to sketch the graph of f1f ^ { - 1 } x01234f1(x)\begin{array}{llllll}x & 0 & 1 & 2 & 3 & 4\\f^{-1}(x)\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>

A) x01234f1(x)04221\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
B) x01234f1(x)42201\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
C) x01234f1(x)20124\begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
D) x01234f1(x)24201\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
E) x01234f1(x)12240\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
سؤال
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=36+x2,x0f ( x ) = 36 + x ^ { 2 } , x \leq 0

A)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = - \sqrt { x - 36 } , x \geq 36
B)No, ff does not have an inverse function.
C)Yes, ff has an inverse function, f1(x)=x+36,x36f ^ { - 1 } ( x ) = - \sqrt { x + 36 } , x \geq 36
D)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = \sqrt { x - 36 } , x \geq 36
E)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = - \sqrt { x - 36 } , x \leq 36
سؤال
Use the graph of ff to determine whether the function has an inverse function.  <strong>Use the graph of  f  to determine whether the function has an inverse function.  </strong> A)Yes,  f  has an inverse function. B)No,  f  does not have an inverse function. <div style=padding-top: 35px>

A)Yes, ff has an inverse function.
B)No, ff does not have an inverse function.
سؤال
A company's profit PP for producing xx units is given by P(x)=47x5736P ( x ) = 47 x - 5736 . Find the inverse function P1(x)P ^ { - 1 } ( x ) and explain what it represents. Describe the domains of P(x)P ( x ) and P1(x)P ^ { - 1 } ( x ) .

A) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,10)P ( x ) : [ 0,10 ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
B) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,5736)P ^ { - 1 } ( x ) : [ - 5736,5736 )
C) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
D) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[1,)P ( x ) : [ 1 , \infty ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
E) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,47)P ^ { - 1 } ( x ) : [ - 5736,47 )
سؤال
Sketch the graphs of inverse functions f(x)=x3,f1(x)=3xf ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x

A)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
B)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x203f(x)101\begin{array} { l l l l } x & - 2 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
C)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)323\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 2 & 3\end{array}
D)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x300f(x)101\begin{array} { l l l l } x & - 3 & 0 & 0 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
E)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)203\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 2 & 0 & 3\end{array}
سؤال
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x4f ( x ) = x ^ { 4 }

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function, y=x4y = x ^ { 4 }
C)Yes, ff has an inverse function, y=x4y = - x ^ { - 4 }
D)Yes, ff has an inverse function, y=x4y = x ^ { - 4 }
E)Yes, ff has an inverse function, y=x4y = - x ^ { 4 }
سؤال
Use the graph of ff to determine whether the function has an inverse function.  <strong>Use the graph of  f  to determine whether the function has an inverse function.  </strong> A)No,  f  does not have an inverse function. B)Yes,  f  has an inverse function. <div style=padding-top: 35px>

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function.
سؤال
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (g1g1)(4)\left( g ^ { - 1 } \circ g ^ { - 1 } \right) ( - 4 )

A)16
B)-16
C)32
D)The value does not exist.
E)-32
سؤال
Use a calculator to evaluate (2.6)( 2.6 )  <strong>Use a calculator to evaluate  ( 2.6 )   . Round your result to three decimal places.</strong> A)  \approx 0.463  B)  \approx 4.463  C)  \approx 3.463  D)  \approx 1.463  E)  \approx 2.463  <div style=padding-top: 35px>  . Round your result to three decimal places.

A) 0.463\approx 0.463
B) 4.463\approx 4.463
C) 3.463\approx 3.463
D) 1.463\approx 1.463
E) 2.463\approx 2.463
سؤال
Sketch the graph of the function y=e0.1xy = e ^ { - 0.1 x }

A)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Use a calculator to evaluate the function f(x)=exf ( x ) = e ^ { x } for the given value of xx , x=0.3x = 0.3 . Round your result to three decimal places.

A) e0.31.050e ^ { 0.3 } \approx 1.050
B) e0.30.050e ^ { 0.3 } \approx 0.050
C) e0.31.50e ^ { 0.3 } \approx 1.50
D) e0.30.350e ^ { 0.3 } \approx 0.350
E) e0.31.350e ^ { 0.3 } \approx 1.350
سؤال
You deposit a lump sum PP in a trust fund on the day your child is born. The fund earns 6.5% interest compounded continuously. Find the amount PP that will yield the given balance AA on your child's 25th birthday. A=$100,000A = \$ 100,000

A) P$10,691.17P \approx \$ 10,691.17
B) P$9,691.17P \approx \$ 9,691.17
C) P$14,691.17P \approx \$ 14,691.17
D) P$11,691.17P \approx \$ 11,691.17
E) P$19,691.17P \approx \$ 19,691.17
سؤال
Sketch the graph of the function f(x)=(15)xf ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x } .

A)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Evaluate the expression below. Round your results to three decimal places. e3e ^ { 3 }

A)2.718
B)20.086
C)0.135
D)54.598
E)7.389
سؤال
Match the function f(x)=2x3f ( x ) = 2 ^ { x - 3 } with its graph.

A)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Strontinum-90 has a half life of 29.1 years.The amount S of 100 kilograms of Strontinum6990 present after t years is given by S=100e0.0238tS = 100 e ^ { - 0.0238 t } How much of the 100 kilograms will remain after 50 years?

A)about 31.4 kilograms
B)about 35.4 kilograms
C)about 30.4 kilograms
D)about 37.4 kilograms
E)about 40.4 kilograms
سؤال
The present value of money is the principal PP you need to invest today so that it will grow to an amount AA at the end of specified time. The present value formula P=A(1+rn)ntP = A \left( 1 + \frac { r } { n } \right) ^ { - n t } is obtained by solving the compound interest formula A=P(1+rn)ntA = P \left( 1 + \frac { r } { n } \right) ^ { n t } for PP . Recall that tt is the number of years, rr is the interest rate per year, and nn is the number of compoundings per year. find the present value of amount AA invested at rate rr for tt years, compounded nn times per year. A=$10,000,r=6%,t=5 years ,n=4A = \$ 10,000 , r = 6 \% , t = 5 \text { years } , n = 4

A) P6424.70P \approx 6424.70
B) P3424.70P \approx 3424.70
C) P4424.70P \approx 4424.70
D) P7424.70P \approx 7424.70
E) P5424.70P \approx 5424.70
سؤال
The present value of money is the principal PP you need to invest today so that it will grow to an amount AA at the end of specified time. The present value formula P=A(1+rn)ntP = A \left( 1 + \frac { r } { n } \right) ^ { - n t } is obtained by solving the compound interest formula A=P(1+rn)ntA = P \left( 1 + \frac { r } { n } \right) ^ { n t } for PP . Recall that tt is the number of years, rr is the interest rate per year, and nn is the number of compoundings per year. find the present value of amount AA invested at rate rr for tt years, compounded nn times per year. A=$1,000,000,r=8%,t=20 years ,n=2A = \$ 1,000,000 , r = 8 \% , t = 20 \text { years }, n = 2

A) P$108,289.04P \approx \$ 108,289.04
B) P$208,289.04P \approx \$ 208,289.04
C) P$308,289.04P \approx \$ 308,289.04
D) P$20,289.04P \approx \$ 20,289.04
E) P$1008,289.04P \approx \$ 1008,289.04
سؤال
Use a calculator to evaluate 626 ^ { - \sqrt { 2 } } . Round your result to three decimal places.

A) 0.079\approx 0.079
B) 4.079\approx 4.079
C) 1.079\approx 1.079
D) 3.079\approx 3.079
E) 2.079\approx 2.079
سؤال
The demand function for a limited edition comic book is given by p=3000(155+e0.015x)p = 3000 \left( 1 - \frac { 5 } { 5 + e ^ { - 0.015 x } } \right) Find the price pp for a demand of x=45x = 45 units.

A)$5722.74
B)$277.26
C)$369.89
D)$340.13
E)$6369.89
سؤال
Sketch the graph of the function y=3x2y = 3 ^ { - x ^ { 2 } } .

A)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Sketch the graph of the function g(x)=4xg ( x ) = 4 ^ { x } .

A)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Sketch the graph of the function N(t)=2etN ( t ) = 2 - e ^ { t }

A)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
The number of certain type of bacteria increases according to the model P(t)=100e0.01896tP ( t ) = 100 e ^ { 0.01896 t } where t is time (in hours)
a)Find P(0).
b)Find P(5).
c)Find P(10).
d)Find P(24).

A)a) P(0)=100P ( 0 ) = 100 b) P(5)109.94P ( 5 ) \approx 109.94 c) P(10)120.88P ( 10 ) \approx 120.88 d) P(24)157.62P ( 24 ) \approx 157.62
B)a) P(0)100P ( 0 ) \approx 100 b) P(5)&119.94P ( 5 ) \& 119.94 c) P(10)102.88P ( 10 ) \approx 102.88 d) P(24)257.62\mathrm { P } ( 24 ) \approx 257.62
C)a) P(0)=120.56\mathrm { P } ( 0 ) = 120.56 b) P(5)=100.94P ( 5 ) = 100.94 c) P(10)620.88P ( 10 ) \approx 620.88 d) P(24)517.62P ( 24 ) \approx 517.62
D)a) P(0)=109.78\mathrm { P } ( 0 ) = 109.78 b) P(5)100.94P ( 5 ) \approx 100.94 c) P(10)150.88P ( 10 ) \approx 150.88 d) P(24)357.62P ( 24 ) \approx 357.62
E)a) P(0)=105P ( 0 ) = 105 b) P(5)119.94P ( 5 ) \approx 119.94 c) P(10)120.08P ( 10 ) \approx 120.08 d) P(24)157.52P ( 24 ) \approx 157.52
سؤال
Determine whether e=271,80199,990e = \frac { 271,801 } { 99,990 } . Justify your answer.

A)Yes, e=271,80199,990e = \frac { 271,801 } { 99,990 } because ee is a rational number.
B)No, e271,80199,990e \neq \frac { 271,801 } { 99,990 } because ee is not a rational number.
سؤال
Match the function f(x)=2xf ( x ) = 2 ^ { - x } with its graph.

A)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Determine which of the following functions is graphed below. 2x1,2x1,2x+1,2x+2,2x+22 ^ { x } - 1,2 ^ { - x } - 1,2 ^ { - x } + 1,2 ^ { - x } + 2,2 ^ { x } + 2  <strong>Determine which of the following functions is graphed below.  2 ^ { x } - 1,2 ^ { - x } - 1,2 ^ { - x } + 1,2 ^ { - x } + 2,2 ^ { x } + 2   </strong> A)  2 ^ { x } - 1  B)  2 ^ { - x } - 1  C)  2 ^ { - x } + 1  D)  2 ^ { - x } + 2  E)  2 ^ { x } + 2  <div style=padding-top: 35px>

A) 2x12 ^ { x } - 1
B) 2x12 ^ { - x } - 1
C) 2x+12 ^ { - x } + 1
D) 2x+22 ^ { - x } + 2
E) 2x+22 ^ { x } + 2
سؤال
Use a calculator to evaluate the function f(x)=exf ( x ) = e ^ { x } for the given value of xx , x=4x = 4 . Round your result to three decimal places.

A) e454.598e ^ { 4 } \approx 54.598
B) e444.598e ^ { 4 } \approx 44.598
C) e450.598e ^ { 4 } \approx 50.598
D) e452.598e ^ { 4 } \approx 52.598
E) e445.598e ^ { 4 } \approx 45.598
سؤال
Find the domain of the function k(x)=log8(4x)k ( x ) = \log _ { 8 } ( 4 - x ) .

A) (4,)( 4 , \infty )
B) (,8)( - \infty , 8 )
C) (4,)( - 4 , \infty )
D) (,4)( - \infty , 4 )
E) (8,)( 8 , \infty )
سؤال
Rewrite the exponential equation 32=193 ^ { - 2 } = \frac { 1 } { 9 } in logarithmic form.

A) log319=2\log _ { 3 } \frac { 1 } { 9 } = - 2
B) log29=2\log _ { 2 } 9 = - 2
C) log39=2\log _ { 3 } 9 = - 2
D) log93=2\log _ { 9 } 3 = - 2
E) log319=2\log _ { 3 } \frac { 1 } { 9 } = 2
سؤال
Rewrite the logarithmic equation log6136=2\log _ { 6 } \frac { 1 } { 36 } = - 2 in exponential form.

A) 636=26 ^ { 36 } = - 2
B) 61/36=26 ^ { 1 / 36 } = - 2
C) 62=1366 ^ { - 2 } = \frac { 1 } { 36 }
D) (136)2=6\left( \frac { 1 } { 36 } \right) ^ { - 2 } = 6
E) 62=1366 ^ { - 2 } = - \frac { 1 } { 36 }
سؤال
Expand the given logarithmic expression. Assume all variable expressions represent positive real numbers. ln(x7/4y3/2)\ln \left( x ^ { 7 / 4 } y ^ { 3 / 2 } \right)

A) 218lnxy\frac { 21 } { 8 } \ln x y
B) 218lnxlny\frac { 21 } { 8 } \ln x \ln y
C) xln(74)+yln(32)x \ln \left( \frac { 7 } { 4 } \right) + y \ln \left( \frac { 3 } { 2 } \right)
D) 32lnx+74lny\frac { 3 } { 2 } \ln x + \frac { 7 } { 4 } \ln y
E) 74lnx+32lny\frac { 7 } { 4 } \ln x + \frac { 3 } { 2 } \ln y
سؤال
Evaluate the logarithm log7714\log _ { 7 } 714 using the change of base formula. Round to 3 decimal places.

A)6.571
B)0.296
C)3.377
D)12.786
E)2.854
سؤال
Expand the logarithmic expression ln(z6x4y45)\ln \left( \frac { z ^ { 6 } } { \sqrt [ 5 ] { x ^ { 4 } y ^ { 4 } } } \right) . Assume all variable expressions represent positive real numbers.

A) ln(6z20x+20y)\ln ( 6 z - 20 x + 20 y )
B) 6lnz45lnx45lny6 \ln z - \frac { 4 } { 5 } \ln x - \frac { 4 } { 5 } \ln y
C) 6lnz20lnx20lny6 \ln z - 20 \ln x - 20 \ln y
D) ln(6z45x45y)\ln \left( 6 z - \frac { 4 } { 5 } x - \frac { 4 } { 5 } y \right)
E) 6lnz45lnx+45lny6 \ln z - \frac { 4 } { 5 } \ln x + \frac { 4 } { 5 } \ln y
سؤال
Find the exact value of log5253\log _ { 5 } \sqrt [ 3 ] { 25 } without using a calculator.

A) 253\frac { 25 } { 3 }
B) 325\frac { 3 } { 25 }
C) 103\frac { 10 } { 3 }
D) 23\frac { 2 } { 3 }
E)-1
سؤال
Write the exponential equation e3/2=4.4817e ^ { 3 / 2 } = 4.4817 \ldots in logarithmic form.

A) 2.303log(32)=4.48172.303 \log \left( \frac { 3 } { 2 } \right) = 4.4817 \ldots
B) log10(4.4817)=32\log _ { 10 } ( 4.4817 \ldots ) = \frac { 3 } { 2 }
C) ln(32)=4.4817\ln \left( \frac { 3 } { 2 } \right) = 4.4817 \ldots
D) ln(4.4817)=32\ln ( 4.4817 \ldots ) = \frac { 3 } { 2 }
E) ln3=4.48172\ln 3 = \frac { 4.4817 \ldots } { 2 }
سؤال
Write the expression below as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers. 5log2t16log2u+4log2v5 \log _ { 2 } t - \frac { 1 } { 6 } \log _ { 2 } u + 4 \log _ { 2 } v

A) log2(t5u6+v4)\log _ { 2 } \left( t ^ { 5 } - u ^ { - 6 } + v ^ { 4 } \right)
B) log2(t5+1u6+v4)\log _ { 2 } \left( t ^ { 5 } + \frac { 1 } { \sqrt [ 6 ] { u } } + v ^ { 4 } \right)
C) log2(t5v4u6)\log _ { 2 } \left( \frac { t ^ { 5 } v ^ { 4 } } { \sqrt [ 6 ] { u } } \right)
D) log2(t5v6u4)\log _ { 2 } \left( \frac { t ^ { 5 } v ^ { 6 } } { \sqrt [ 4 ] { u } } \right)
E) log2(t6v4u5)\log _ { 2 } \left( \frac { t ^ { 6 } v ^ { 4 } } { \sqrt [ 5 ] { u } } \right)
سؤال
Approximate the logarithm below using the properties of logarithms, given logb20.3562,\log _ { b } 2 \approx 0.3562, logb30.5646,\log _ { b } 3 \approx 0.5646, and logb50.8271.\log _ { b } 5 \approx 0.8271. logb32\log _ { b } \frac { 3 } { 2 }

A)-0.2084
B)-0.2625
C)0.2084
D)0.2625
E)0.4709
سؤال
Condense the expression 15[log5x+log56][log5y]\frac { 1 } { 5 } \left[ \log _ { 5 } x + \log _ { 5 } 6 \right] - \left[ \log _ { 5 } y \right] to the logarithm of a single term.

A) log5(6x)5y\log _ { 5 } \frac { ( 6 x ) ^ { 5 } } { y }
B) log56x5y\log _ { 5 } \frac { 6 x } { 5 y }
C) log56xy5\log _ { 5 } \sqrt [ 5 ] { \frac { 6 x } { y } }
D) log56x5y\log _ { 5 } \frac { \sqrt [ 5 ] { 6 x } } { y }
E) log56x5log5y\log _ { 5 } \sqrt[5] { 6 x } - \log _ { 5 } y
سؤال
Write the exponential equation 32=93 ^ { 2 } = 9 in its logarithmic form.

A) log29=3\log _ { 2 } 9 = 3
B) log32=9\log _ { 3 } 2 = 9
C) log93=2\log _ { 9 } 3 = 2
D) log23=9\log _ { 2 } 3 = 9
E) log39=2\log _ { 3 } 9 = 2
سؤال
Write the logarithmic equation 4=log2164 = \log _ { 2 } 16 in its exponential form.

A) 216=42 ^ { 16 } = 4
B) 24=162 ^ { 4 } = 16
C) 164=216 ^ { 4 } = 2
D) 42=164 ^ { 2 } = 16
E) 416=24 ^ { 16 } = 2
سؤال
Condense the expression log3x+log34\log _ { 3 } x + \log _ { 3 } 4 to the logarithm of a single term.

A) log(4x)3\log ( 4 x ) ^ { 3 }
B) log34x\log _ { 3 } 4 x
C) log34x\log _ { 3 } 4 ^ { x }
D) log3x4\log _ { 3 } x ^ { 4 }
E) log3(x+4)\log _ { 3 } ( x + 4 )
سؤال
Match the function below with its graph. f(x)=3lnx2f ( x ) = 3 \ln x - 2 Graph I :  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>  Graph IV:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>  Graph II:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>  Graph V:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>  Graph III:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>

A)Graph III
B)Graph I
C)Graph II
D)Graph V
E)Graph IV
سؤال
Write 5ln(x+7)3lnx4ln(x2+8)5 \ln ( x + 7 ) - 3 \ln x - 4 \ln \left( x ^ { 2 } + 8 \right) as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers.

A) ln(x3(x+7)5(x2+8)4)\ln \left( x ^ { 3 } ( x + 7 ) ^ { 5 } \left( x ^ { 2 } + 8 \right) ^ { 4 } \right)
B) ln(5(x+7)12x(x2+8))\ln \left( \frac { 5 ( x + 7 ) } { 12 x \left( x ^ { 2 } + 8 \right) } \right)
C) ln(60x(x+7)(x2+8))\ln \left( 60 x ( x + 7 ) \left( x ^ { 2 } + 8 \right) \right)
D) ln(4x2+2x+3)\ln \left( - 4 x ^ { 2 } + 2 x + 3 \right)
E) ln((x+7)5x3(x2+8)4)\ln \left( \frac { ( x + 7 ) ^ { 5 } } { x ^ { 3 } \left( x ^ { 2 } + 8 \right) ^ { 4 } } \right)
سؤال
Find the vertical asymptote of the logarithmic function below. f(x)=log2(x4)f ( x ) = \log _ { 2 } ( x - 4 )

A) x=5x = 5
B) x=2x = 2
C) x=5x = - 5
D) x=4x = - 4
E) x=4x = 4
سؤال
Use the properties of logarithms to simplify the logarithmic expression below. log5175\log _ { 5 } \sqrt { 175 }

A) 2log572 \log _ { 5 } 7
B) 1+12log571 + \frac { 1 } { 2 } \log _ { 5 } 7
C) 2+12log572 + \frac { 1 } { 2 } \log _ { 5 } 7
D) 2+log572 + \log _ { 5 } 7
E) 1+log571 + \log _ { 5 } 7
سؤال
Evaluate the logarithm log2132\log _ { 2 } \frac { 1 } { 32 } without using a calculator.

A) 5- 5
B) 44
C) 1616
D) 4- 4
E) 55
سؤال
Write the logarithmic equation ln6=1.792\ln 6 = 1.792 \ldots in exponential form.

A) e1.792=6e ^ { 1.792 \ldots } = 6
B) 106=1.79210 ^ { 6 } = 1.792 \ldots
C) 2.303e1.792=62.303 e ^ { 1.792 \ldots } = 6
D) 2.303×106=1.7922.303 \times 10 ^ { 6 } = 1.792 \ldots
E) e6=1.792e ^ { 6 } = 1.792 \ldots
سؤال
Approximate the solution to ln5x=3.2\ln 5 x = 3.2 . Round to 3 decimal places.

A)1.896
B)4.907
C)4.809
D)-0.446
E)316.979
سؤال
Solve for x.x. ln(6x11)=0\ln ( 6 x - 11 ) = 0

A) x=4x = 4
B) x=2x = 2
C) x=5x = 5
D) x=116x = \frac { 11 } { 6 }
E) x=72x = \frac { 7 } { 2 }
سؤال
Solve the exponential equation algebraically. Approximate the result to three decimal places. e2x5ex+4=0e ^ { 2 x } - 5 e ^ { x } + 4 = 0

A) x=0.000,1.000x = 0.000,1.000
B) x=0.000,1.386x = 0.000,1.386
C) x=0.000,4.000x = 0.000,4.000
D) x=1.000,4.000x = 1.000,4.000
E) x=1.386,4.000x = 1.386,4.000
سؤال
Use algebraic procedures to find the exact solution of the equation lnx=12ln(2x+199)+12ln9\ln x = \frac { 1 } { 2 } \ln \left( 2 x + \frac { 19 } { 9 } \right) + \frac { 1 } { 2 } \ln 9 .

A)-1, 19
B) 1914- \frac { 19 } { 14 }
C)2, 9
D)19
E)1
سؤال
Approximate the solution to ln(x+3)lnx=1\ln ( x + 3 ) - \ln x = 1 . Round to 3 decimal places.

A)-0.632
B)0.250
C)1.746
D)2.718
E)0.333
سؤال
Solve the exponential equation algebraically. Approximate the result to three decimal places. 4006+e6x=8\frac { 400 } { 6 + e ^ { 6 x } } = 8

A) x=0.671x = 0.671
B) x=infx = \inf
C) x=0.631x = 0.631
D) x=1.001x = 1.001
E) x=0.996x = 0.996
سؤال
Use algebraic procedures to find the exact solution of the equation log5x+log5(x20)=3\log _ { 5 } x + \log _ { 5 } ( x - 20 ) = 3 .

A)0, -20
B)25
C)3, 5
D)-5, 25
E)5
سؤال
Use algebraic procedures to find the exact solution(s) of the equation below. 69x+2=12166 ^ { 9 x + 2 } = \frac { 1 } { 216 }

A) x=59x = - \frac { 5 } { 9 }
B) x=19x = \frac { 1 } { 9 }
C) x=16x = \frac { 1 } { 6 }
D) x=56x = - \frac { 5 } { 6 }
E) x=56x = \frac { 5 } { 6 }
سؤال
Solve (12)x=8\left( \frac { 1 } { 2 } \right) ^ { x } = 8 for x.

A)1
B) 1- 1
C) 3- 3
D) 2- 2
E)no solution
سؤال
The approximate lengths and diameters (in inches) of common nails are shown in the table. Find a logarithmic equation that relates the diameter yy of a common nail to its length x.x.  Length, x Diameter, y10.09520.15630.208\begin{array} { | c | c | } \hline \text { Length, } x & \text { Diameter, } y \\\hline 1 & 0.095 \\\hline 2 & 0.156 \\\hline 3 & 0.208 \\\hline\end{array}  Length, x Diameter, y40.25650.30060.342\begin{array} { | c | c | } \hline \text { Length, } x & \text { Diameter, } y \\\hline 4 & 0.256 \\\hline 5 & 0.300 \\\hline 6 & 0.342 \\\hline\end{array}

A) lny=0.095lnx+ln0.715\ln y = - 0.095 \ln x + \ln 0.715
B) lny=0.095lnxln0.715\ln y = 0.095 \ln x - \ln 0.715
C) lny=0.715lnxln0.095\ln y = 0.715 \ln x - \ln 0.095
D) lny=0.095lnxln0.715\ln y = - 0.095 \ln x - \ln 0.715
E) lny=0.715lnx+ln0.095\ln y = 0.715 \ln x + \ln 0.095
سؤال
Use algebraic procedures to find the exact solution(s) of the equation below. 103x=37010 ^ { 3 - x } = 370

A) x=1+3log370x = 1 + 3 \log 370
B) x=13log370x = - 1 - 3 \log 370
C) x=1+3log370x = - 1 + 3 \log 370
D) x=3log370x = - 3 - \log 370
E) x=3log370x = 3 - \log 370
سؤال
An initial investment of $4000 grows at an annual interest rate of 4% compounded continuously. How long will it take to double the investment?

A)17.33 years
B)18.33 years
C)18.00 years
D)17.00 years
E)1 year
سؤال
Solve for x: 5x/3=0.00525 ^ { - x / 3 } = 0.0052 . Round to 3 decimal places.

A)9.803
B)15.777
C)20.606
D)-20.606
E)-3.268
سؤال
Solve for x: 9(10x3)=239 \left( 10 ^ { x - 3 } \right) = 23 . Round to 3 decimal places.

A)3.407
B)0.407
C)1.362
D)-1.362
E)no solution
سؤال
The average monthly sales yy (in billions of dollars) in retail trade in the United States from 1996 to 2005 can be approximated by the model y=22+117lnt,y = 22 + 117 \ln t, 6t156 \leq t \leq 15 where tt represents the year, with t=6t = 6 corresponding to 1996. Estimate the year in which the average monthly sales first exceeded $310 billion.

A)2001
B)2004
C)2002
D)2000
E)1996
سؤال
An industrial psychologist has determined that the average percent score for an employee on a test of the employee's knowledge of the company's product is given by P=1001+24e0.15tP = \frac { 100 } { 1 + 24 e ^ { - 0.15 t } } where t is the number of weeks on the job and P is the percent score. Estimate (to the nearest week) the expected number of weeks of employment that are necessary for an employee to earn a 85% score on the test.

A)38 weeks
B)37 weeks
C)42 weeks
D)60 weeks
E)33 weeks
سؤال
Apply the Inverse Property of logarithmic or exponential functions to simplify the expression below. log8642x+5\log _ { 8 } 64 ^ { 2 x + 5 }

A) 4x+104 x + 10
B) 16x+4016 x + 40
C) 82x+58 ^ { 2 x + 5 }
D) 2log8(2x+5)2 \log _ { 8 } ( 2 x + 5 )
E) 8log8(2x+5)8 \log _ { 8 } ( 2 x + 5 )
سؤال
Approximate the solution of 16e7x=2216 e ^ { 7 x } = 22 to 3 decimal places. (You may use a graphing utility.)

A)-6.682
B)0.164
C)-1.627
D)2.229
E)0.045
سؤال
Use a graphing utility to approximate the solution to log4x+log4(2x+1)=2\log _ { 4 } x + \log _ { 4 } ( 2 x + 1 ) = 2 . Round to 3 decimal places.

A)6.179
B)5.179
C)3.089
D)2.589
E)no solution
سؤال
Solve for x. 23x=1282 ^ { 3 x } = 128

A) 1283\frac { 128 } { 3 }
B) 643- \frac { 64 } { 3 }
C) 73\frac { 7 } { 3 }
D) 37\frac { 3 } { 7 }
E)2
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/94
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 5: Exponential and Logarithmic Functions
1
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (f1g1)(1)\left( f ^ { - 1 } \circ g ^ { - 1 } \right) ( 1 )

A)32
B)35
C)33
D)37
E)30
32
2
Show that ff and gg are functions by using the definition of inverse functions. f(x)=1x,g(x)=1xf ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 1 } { x }

A) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x - 1
B) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x - 1 , g ( f ( x ) ) = x
C) f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
D) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x ^ { - 1 }
E) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x ^ { - 1 } , g ( f ( x ) ) = x
f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
3
Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions g1f1g ^ { - 1 } \circ f ^ { - 1 }

A) x22\frac { x - 2 } { 2 }
B) x+22\frac { x + 2 } { - 2 }
C) x22\frac { x - 2 } { - 2 }
D) (x+2)2\frac { - ( x + 2 ) } { 2 }
E) x+22\frac { x + 2 } { 2 }
x+22\frac { x + 2 } { 2 }
4
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x2,x2f ( x ) = | x - 2 | , x \leq 2

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function, f1(x)=2x,x0f ^ { - 1 } ( x ) = 2 - x , x \geq 0
C)Yes, ff has an inverse function, f1(x)=2x,x0f ^ { - 1 } ( x ) = - 2 - x , x \geq 0
D)Yes, ff has an inverse function, f1(x)=2+x,x0f ^ { - 1 } ( x ) = 2 + x , x \geq 0
E)Yes, ff has an inverse function, f1(x)=2+x,x0f ^ { - 1 } ( x ) = - 2 + x , x \geq 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
5
Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions (gf)1(g\circ f)^{-1}

A) (x+2)2\frac { - ( x + 2 ) } { - 2 }
B) x+22\frac { - x + 2 } { 2 }
C) x22\frac { x - 2 } { 2 }
D) x22\frac { x - 2 } { - 2 }
E) x+22\frac { x + 2 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
6
Show that ff and gg are functions by using the definition of inverse functions. f(x)=5x+1,g(x)=x15f ( x ) = 5 x + 1 , g ( x ) = \frac { x - 1 } { 5 }

A) f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
B) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x ^ { - 1 } , g ( f ( x ) ) = x
C) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x ^ { - 1 }
D) f(g(x))=x+1,g(f(x))=xf ( g ( x ) ) = x + 1 , g ( f ( x ) ) = x
E) f(g(x))=x,g(f(x))=x+1f ( g ( x ) ) = x , g ( f ( x ) ) = x + 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the inverse function of the function f given by the set of ordered pairs. {(6,2),(5,3),(4,4),(3,5)}\{ ( 6,2 ) , ( 5,3 ) , ( 4,4 ) , ( 3,5 ) \}

A) f1={(2,6),(3,5),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,4 ) , ( 5,3 ) \}
B) f1={(2,6),(3,5),(4,4),(5,5)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,4 ) , ( 5,5 ) \}
C) f1={(2,6),(3,5),(4,2),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,2 ) , ( 5,3 ) \}
D) f1={(2,6),(3,3),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,3 ) , ( 4,4 ) , ( 5,3 ) \}
E) f1={(2,2),(3,5),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,2 ) , ( 3,5 ) , ( 4,4 ) , ( 5,3 ) \}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
8
Sketch the graphs of inverse functions f(x)=x52,f1(x)=x+25f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 } in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x

A)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}   x101f(x)321x421f1(x)101\begin{array} { l l r r } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 4 & - 2 & - 1 \\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
B)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}   x101f(x)321x321f1(x)121\begin{array} { l lrr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 2 & 1\end{array}
C)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}   x001f(x)321x321f1(x)101\begin{array} { l r rr } x & 0 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
D)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}   x101f(x)321x321f1(x)101\begin{array} { l l rr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
E)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}
x101f(x)321x321f1(x)121\begin{array}{llrr}x & -1 & 0 & -1 \\f(x) & -3 & -2 & -1 \\\\x & -3& 2& -1 \\f^{-1}(x) & -1 & -2 & 1\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the inverse function informally f(x)=x5f ( x ) = x - 5 . Verify that f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x

A) f1(x)=x+1f ^ { - 1 } ( x ) = x + 1 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
C) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=x1f ^ { - 1 } ( f ( x ) ) = x - 1
D) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=x+1f \left( f ^ { - 1 } ( x ) \right) = x + 1 , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=x1f ^ { - 1 } ( f ( x ) ) = x ^ { - 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
10
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (g1f1)(3)\left( g ^ { - 1 } \circ f ^ { - 1 } \right) ( - 3 )

A)1
B)0
C)3
D)4
E)2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find the inverse function of the function f given by the set of ordered pairs. {(1,4),(2,5),(3,6),(4,7)}\{ ( 1,4 ) , ( 2,5 ) , ( 3,6 ) , ( 4,7 ) \}

A) f1={(4,4),(5,2),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,4 ) , ( 5,2 ) , ( 6,3 ) , ( 7,4 ) \}
B) f1={(4,1),(5,5),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,5 ) , ( 6,3 ) , ( 7,4 ) \}
C) f1={(4,1),(5,2),(6,6),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,6 ) , ( 7,4 ) \}
D) f1={(4,1),(5,2),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,3 ) , ( 7,4 ) \}
E) f1={(4,1),(5,2),(6,3),(7,7)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,3 ) , ( 7,7 ) \}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the inverse function informally f(x)=2xf ( x ) = 2 x . Verify that f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x

A) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=x1f \left( f ^ { - 1 } ( x ) \right) = x ^ { - 1 } , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=2xf \left( f ^ { - 1 } ( x ) \right) = 2 x , f1(f(x))=3xf ^ { - 1 } ( f ( x ) ) = 3 x
C) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=2xf ^ { - 1 } ( f ( x ) ) = 2 x
D) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=3xf \left( f ^ { - 1 } ( x ) \right) = 3 x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
13
Use the graph of ff to complete the table and to sketch the graph of f1f ^ { - 1 } x01234f1(x)\begin{array}{llllll}x & 0 & 1 & 2 & 3 & 4\\f^{-1}(x)\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}

A) x01234f1(x)04221\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
B) x01234f1(x)42201\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
C) x01234f1(x)20124\begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
D) x01234f1(x)24201\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
E) x01234f1(x)12240\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
14
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=36+x2,x0f ( x ) = 36 + x ^ { 2 } , x \leq 0

A)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = - \sqrt { x - 36 } , x \geq 36
B)No, ff does not have an inverse function.
C)Yes, ff has an inverse function, f1(x)=x+36,x36f ^ { - 1 } ( x ) = - \sqrt { x + 36 } , x \geq 36
D)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = \sqrt { x - 36 } , x \geq 36
E)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = - \sqrt { x - 36 } , x \leq 36
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
15
Use the graph of ff to determine whether the function has an inverse function.  <strong>Use the graph of  f  to determine whether the function has an inverse function.  </strong> A)Yes,  f  has an inverse function. B)No,  f  does not have an inverse function.

A)Yes, ff has an inverse function.
B)No, ff does not have an inverse function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
16
A company's profit PP for producing xx units is given by P(x)=47x5736P ( x ) = 47 x - 5736 . Find the inverse function P1(x)P ^ { - 1 } ( x ) and explain what it represents. Describe the domains of P(x)P ( x ) and P1(x)P ^ { - 1 } ( x ) .

A) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,10)P ( x ) : [ 0,10 ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
B) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,5736)P ^ { - 1 } ( x ) : [ - 5736,5736 )
C) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
D) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[1,)P ( x ) : [ 1 , \infty ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
E) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,47)P ^ { - 1 } ( x ) : [ - 5736,47 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
17
Sketch the graphs of inverse functions f(x)=x3,f1(x)=3xf ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x

A)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
B)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x203f(x)101\begin{array} { l l l l } x & - 2 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
C)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)323\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 2 & 3\end{array}
D)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x300f(x)101\begin{array} { l l l l } x & - 3 & 0 & 0 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
E)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)203\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 2 & 0 & 3\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
18
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x4f ( x ) = x ^ { 4 }

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function, y=x4y = x ^ { 4 }
C)Yes, ff has an inverse function, y=x4y = - x ^ { - 4 }
D)Yes, ff has an inverse function, y=x4y = x ^ { - 4 }
E)Yes, ff has an inverse function, y=x4y = - x ^ { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
19
Use the graph of ff to determine whether the function has an inverse function.  <strong>Use the graph of  f  to determine whether the function has an inverse function.  </strong> A)No,  f  does not have an inverse function. B)Yes,  f  has an inverse function.

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
20
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (g1g1)(4)\left( g ^ { - 1 } \circ g ^ { - 1 } \right) ( - 4 )

A)16
B)-16
C)32
D)The value does not exist.
E)-32
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
21
Use a calculator to evaluate (2.6)( 2.6 )  <strong>Use a calculator to evaluate  ( 2.6 )   . Round your result to three decimal places.</strong> A)  \approx 0.463  B)  \approx 4.463  C)  \approx 3.463  D)  \approx 1.463  E)  \approx 2.463   . Round your result to three decimal places.

A) 0.463\approx 0.463
B) 4.463\approx 4.463
C) 3.463\approx 3.463
D) 1.463\approx 1.463
E) 2.463\approx 2.463
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
22
Sketch the graph of the function y=e0.1xy = e ^ { - 0.1 x }

A)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
23
Use a calculator to evaluate the function f(x)=exf ( x ) = e ^ { x } for the given value of xx , x=0.3x = 0.3 . Round your result to three decimal places.

A) e0.31.050e ^ { 0.3 } \approx 1.050
B) e0.30.050e ^ { 0.3 } \approx 0.050
C) e0.31.50e ^ { 0.3 } \approx 1.50
D) e0.30.350e ^ { 0.3 } \approx 0.350
E) e0.31.350e ^ { 0.3 } \approx 1.350
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
24
You deposit a lump sum PP in a trust fund on the day your child is born. The fund earns 6.5% interest compounded continuously. Find the amount PP that will yield the given balance AA on your child's 25th birthday. A=$100,000A = \$ 100,000

A) P$10,691.17P \approx \$ 10,691.17
B) P$9,691.17P \approx \$ 9,691.17
C) P$14,691.17P \approx \$ 14,691.17
D) P$11,691.17P \approx \$ 11,691.17
E) P$19,691.17P \approx \$ 19,691.17
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
25
Sketch the graph of the function f(x)=(15)xf ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x } .

A)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
26
Evaluate the expression below. Round your results to three decimal places. e3e ^ { 3 }

A)2.718
B)20.086
C)0.135
D)54.598
E)7.389
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
27
Match the function f(x)=2x3f ( x ) = 2 ^ { x - 3 } with its graph.

A)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
B)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
C)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
D)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
E)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
28
Strontinum-90 has a half life of 29.1 years.The amount S of 100 kilograms of Strontinum6990 present after t years is given by S=100e0.0238tS = 100 e ^ { - 0.0238 t } How much of the 100 kilograms will remain after 50 years?

A)about 31.4 kilograms
B)about 35.4 kilograms
C)about 30.4 kilograms
D)about 37.4 kilograms
E)about 40.4 kilograms
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
29
The present value of money is the principal PP you need to invest today so that it will grow to an amount AA at the end of specified time. The present value formula P=A(1+rn)ntP = A \left( 1 + \frac { r } { n } \right) ^ { - n t } is obtained by solving the compound interest formula A=P(1+rn)ntA = P \left( 1 + \frac { r } { n } \right) ^ { n t } for PP . Recall that tt is the number of years, rr is the interest rate per year, and nn is the number of compoundings per year. find the present value of amount AA invested at rate rr for tt years, compounded nn times per year. A=$10,000,r=6%,t=5 years ,n=4A = \$ 10,000 , r = 6 \% , t = 5 \text { years } , n = 4

A) P6424.70P \approx 6424.70
B) P3424.70P \approx 3424.70
C) P4424.70P \approx 4424.70
D) P7424.70P \approx 7424.70
E) P5424.70P \approx 5424.70
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
30
The present value of money is the principal PP you need to invest today so that it will grow to an amount AA at the end of specified time. The present value formula P=A(1+rn)ntP = A \left( 1 + \frac { r } { n } \right) ^ { - n t } is obtained by solving the compound interest formula A=P(1+rn)ntA = P \left( 1 + \frac { r } { n } \right) ^ { n t } for PP . Recall that tt is the number of years, rr is the interest rate per year, and nn is the number of compoundings per year. find the present value of amount AA invested at rate rr for tt years, compounded nn times per year. A=$1,000,000,r=8%,t=20 years ,n=2A = \$ 1,000,000 , r = 8 \% , t = 20 \text { years }, n = 2

A) P$108,289.04P \approx \$ 108,289.04
B) P$208,289.04P \approx \$ 208,289.04
C) P$308,289.04P \approx \$ 308,289.04
D) P$20,289.04P \approx \$ 20,289.04
E) P$1008,289.04P \approx \$ 1008,289.04
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
31
Use a calculator to evaluate 626 ^ { - \sqrt { 2 } } . Round your result to three decimal places.

A) 0.079\approx 0.079
B) 4.079\approx 4.079
C) 1.079\approx 1.079
D) 3.079\approx 3.079
E) 2.079\approx 2.079
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
32
The demand function for a limited edition comic book is given by p=3000(155+e0.015x)p = 3000 \left( 1 - \frac { 5 } { 5 + e ^ { - 0.015 x } } \right) Find the price pp for a demand of x=45x = 45 units.

A)$5722.74
B)$277.26
C)$369.89
D)$340.13
E)$6369.89
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
33
Sketch the graph of the function y=3x2y = 3 ^ { - x ^ { 2 } } .

A)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
34
Sketch the graph of the function g(x)=4xg ( x ) = 4 ^ { x } .

A)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
35
Sketch the graph of the function N(t)=2etN ( t ) = 2 - e ^ { t }

A)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
36
The number of certain type of bacteria increases according to the model P(t)=100e0.01896tP ( t ) = 100 e ^ { 0.01896 t } where t is time (in hours)
a)Find P(0).
b)Find P(5).
c)Find P(10).
d)Find P(24).

A)a) P(0)=100P ( 0 ) = 100 b) P(5)109.94P ( 5 ) \approx 109.94 c) P(10)120.88P ( 10 ) \approx 120.88 d) P(24)157.62P ( 24 ) \approx 157.62
B)a) P(0)100P ( 0 ) \approx 100 b) P(5)&119.94P ( 5 ) \& 119.94 c) P(10)102.88P ( 10 ) \approx 102.88 d) P(24)257.62\mathrm { P } ( 24 ) \approx 257.62
C)a) P(0)=120.56\mathrm { P } ( 0 ) = 120.56 b) P(5)=100.94P ( 5 ) = 100.94 c) P(10)620.88P ( 10 ) \approx 620.88 d) P(24)517.62P ( 24 ) \approx 517.62
D)a) P(0)=109.78\mathrm { P } ( 0 ) = 109.78 b) P(5)100.94P ( 5 ) \approx 100.94 c) P(10)150.88P ( 10 ) \approx 150.88 d) P(24)357.62P ( 24 ) \approx 357.62
E)a) P(0)=105P ( 0 ) = 105 b) P(5)119.94P ( 5 ) \approx 119.94 c) P(10)120.08P ( 10 ) \approx 120.08 d) P(24)157.52P ( 24 ) \approx 157.52
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
37
Determine whether e=271,80199,990e = \frac { 271,801 } { 99,990 } . Justify your answer.

A)Yes, e=271,80199,990e = \frac { 271,801 } { 99,990 } because ee is a rational number.
B)No, e271,80199,990e \neq \frac { 271,801 } { 99,990 } because ee is not a rational number.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
38
Match the function f(x)=2xf ( x ) = 2 ^ { - x } with its graph.

A)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
B)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
C)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
D)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
E)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
39
Determine which of the following functions is graphed below. 2x1,2x1,2x+1,2x+2,2x+22 ^ { x } - 1,2 ^ { - x } - 1,2 ^ { - x } + 1,2 ^ { - x } + 2,2 ^ { x } + 2  <strong>Determine which of the following functions is graphed below.  2 ^ { x } - 1,2 ^ { - x } - 1,2 ^ { - x } + 1,2 ^ { - x } + 2,2 ^ { x } + 2   </strong> A)  2 ^ { x } - 1  B)  2 ^ { - x } - 1  C)  2 ^ { - x } + 1  D)  2 ^ { - x } + 2  E)  2 ^ { x } + 2

A) 2x12 ^ { x } - 1
B) 2x12 ^ { - x } - 1
C) 2x+12 ^ { - x } + 1
D) 2x+22 ^ { - x } + 2
E) 2x+22 ^ { x } + 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
40
Use a calculator to evaluate the function f(x)=exf ( x ) = e ^ { x } for the given value of xx , x=4x = 4 . Round your result to three decimal places.

A) e454.598e ^ { 4 } \approx 54.598
B) e444.598e ^ { 4 } \approx 44.598
C) e450.598e ^ { 4 } \approx 50.598
D) e452.598e ^ { 4 } \approx 52.598
E) e445.598e ^ { 4 } \approx 45.598
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find the domain of the function k(x)=log8(4x)k ( x ) = \log _ { 8 } ( 4 - x ) .

A) (4,)( 4 , \infty )
B) (,8)( - \infty , 8 )
C) (4,)( - 4 , \infty )
D) (,4)( - \infty , 4 )
E) (8,)( 8 , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
42
Rewrite the exponential equation 32=193 ^ { - 2 } = \frac { 1 } { 9 } in logarithmic form.

A) log319=2\log _ { 3 } \frac { 1 } { 9 } = - 2
B) log29=2\log _ { 2 } 9 = - 2
C) log39=2\log _ { 3 } 9 = - 2
D) log93=2\log _ { 9 } 3 = - 2
E) log319=2\log _ { 3 } \frac { 1 } { 9 } = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
43
Rewrite the logarithmic equation log6136=2\log _ { 6 } \frac { 1 } { 36 } = - 2 in exponential form.

A) 636=26 ^ { 36 } = - 2
B) 61/36=26 ^ { 1 / 36 } = - 2
C) 62=1366 ^ { - 2 } = \frac { 1 } { 36 }
D) (136)2=6\left( \frac { 1 } { 36 } \right) ^ { - 2 } = 6
E) 62=1366 ^ { - 2 } = - \frac { 1 } { 36 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
44
Expand the given logarithmic expression. Assume all variable expressions represent positive real numbers. ln(x7/4y3/2)\ln \left( x ^ { 7 / 4 } y ^ { 3 / 2 } \right)

A) 218lnxy\frac { 21 } { 8 } \ln x y
B) 218lnxlny\frac { 21 } { 8 } \ln x \ln y
C) xln(74)+yln(32)x \ln \left( \frac { 7 } { 4 } \right) + y \ln \left( \frac { 3 } { 2 } \right)
D) 32lnx+74lny\frac { 3 } { 2 } \ln x + \frac { 7 } { 4 } \ln y
E) 74lnx+32lny\frac { 7 } { 4 } \ln x + \frac { 3 } { 2 } \ln y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
45
Evaluate the logarithm log7714\log _ { 7 } 714 using the change of base formula. Round to 3 decimal places.

A)6.571
B)0.296
C)3.377
D)12.786
E)2.854
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
46
Expand the logarithmic expression ln(z6x4y45)\ln \left( \frac { z ^ { 6 } } { \sqrt [ 5 ] { x ^ { 4 } y ^ { 4 } } } \right) . Assume all variable expressions represent positive real numbers.

A) ln(6z20x+20y)\ln ( 6 z - 20 x + 20 y )
B) 6lnz45lnx45lny6 \ln z - \frac { 4 } { 5 } \ln x - \frac { 4 } { 5 } \ln y
C) 6lnz20lnx20lny6 \ln z - 20 \ln x - 20 \ln y
D) ln(6z45x45y)\ln \left( 6 z - \frac { 4 } { 5 } x - \frac { 4 } { 5 } y \right)
E) 6lnz45lnx+45lny6 \ln z - \frac { 4 } { 5 } \ln x + \frac { 4 } { 5 } \ln y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find the exact value of log5253\log _ { 5 } \sqrt [ 3 ] { 25 } without using a calculator.

A) 253\frac { 25 } { 3 }
B) 325\frac { 3 } { 25 }
C) 103\frac { 10 } { 3 }
D) 23\frac { 2 } { 3 }
E)-1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
48
Write the exponential equation e3/2=4.4817e ^ { 3 / 2 } = 4.4817 \ldots in logarithmic form.

A) 2.303log(32)=4.48172.303 \log \left( \frac { 3 } { 2 } \right) = 4.4817 \ldots
B) log10(4.4817)=32\log _ { 10 } ( 4.4817 \ldots ) = \frac { 3 } { 2 }
C) ln(32)=4.4817\ln \left( \frac { 3 } { 2 } \right) = 4.4817 \ldots
D) ln(4.4817)=32\ln ( 4.4817 \ldots ) = \frac { 3 } { 2 }
E) ln3=4.48172\ln 3 = \frac { 4.4817 \ldots } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
49
Write the expression below as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers. 5log2t16log2u+4log2v5 \log _ { 2 } t - \frac { 1 } { 6 } \log _ { 2 } u + 4 \log _ { 2 } v

A) log2(t5u6+v4)\log _ { 2 } \left( t ^ { 5 } - u ^ { - 6 } + v ^ { 4 } \right)
B) log2(t5+1u6+v4)\log _ { 2 } \left( t ^ { 5 } + \frac { 1 } { \sqrt [ 6 ] { u } } + v ^ { 4 } \right)
C) log2(t5v4u6)\log _ { 2 } \left( \frac { t ^ { 5 } v ^ { 4 } } { \sqrt [ 6 ] { u } } \right)
D) log2(t5v6u4)\log _ { 2 } \left( \frac { t ^ { 5 } v ^ { 6 } } { \sqrt [ 4 ] { u } } \right)
E) log2(t6v4u5)\log _ { 2 } \left( \frac { t ^ { 6 } v ^ { 4 } } { \sqrt [ 5 ] { u } } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
50
Approximate the logarithm below using the properties of logarithms, given logb20.3562,\log _ { b } 2 \approx 0.3562, logb30.5646,\log _ { b } 3 \approx 0.5646, and logb50.8271.\log _ { b } 5 \approx 0.8271. logb32\log _ { b } \frac { 3 } { 2 }

A)-0.2084
B)-0.2625
C)0.2084
D)0.2625
E)0.4709
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
51
Condense the expression 15[log5x+log56][log5y]\frac { 1 } { 5 } \left[ \log _ { 5 } x + \log _ { 5 } 6 \right] - \left[ \log _ { 5 } y \right] to the logarithm of a single term.

A) log5(6x)5y\log _ { 5 } \frac { ( 6 x ) ^ { 5 } } { y }
B) log56x5y\log _ { 5 } \frac { 6 x } { 5 y }
C) log56xy5\log _ { 5 } \sqrt [ 5 ] { \frac { 6 x } { y } }
D) log56x5y\log _ { 5 } \frac { \sqrt [ 5 ] { 6 x } } { y }
E) log56x5log5y\log _ { 5 } \sqrt[5] { 6 x } - \log _ { 5 } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
52
Write the exponential equation 32=93 ^ { 2 } = 9 in its logarithmic form.

A) log29=3\log _ { 2 } 9 = 3
B) log32=9\log _ { 3 } 2 = 9
C) log93=2\log _ { 9 } 3 = 2
D) log23=9\log _ { 2 } 3 = 9
E) log39=2\log _ { 3 } 9 = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
53
Write the logarithmic equation 4=log2164 = \log _ { 2 } 16 in its exponential form.

A) 216=42 ^ { 16 } = 4
B) 24=162 ^ { 4 } = 16
C) 164=216 ^ { 4 } = 2
D) 42=164 ^ { 2 } = 16
E) 416=24 ^ { 16 } = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
54
Condense the expression log3x+log34\log _ { 3 } x + \log _ { 3 } 4 to the logarithm of a single term.

A) log(4x)3\log ( 4 x ) ^ { 3 }
B) log34x\log _ { 3 } 4 x
C) log34x\log _ { 3 } 4 ^ { x }
D) log3x4\log _ { 3 } x ^ { 4 }
E) log3(x+4)\log _ { 3 } ( x + 4 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
55
Match the function below with its graph. f(x)=3lnx2f ( x ) = 3 \ln x - 2 Graph I :  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV  Graph IV:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV  Graph II:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV  Graph V:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV  Graph III:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV

A)Graph III
B)Graph I
C)Graph II
D)Graph V
E)Graph IV
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
56
Write 5ln(x+7)3lnx4ln(x2+8)5 \ln ( x + 7 ) - 3 \ln x - 4 \ln \left( x ^ { 2 } + 8 \right) as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers.

A) ln(x3(x+7)5(x2+8)4)\ln \left( x ^ { 3 } ( x + 7 ) ^ { 5 } \left( x ^ { 2 } + 8 \right) ^ { 4 } \right)
B) ln(5(x+7)12x(x2+8))\ln \left( \frac { 5 ( x + 7 ) } { 12 x \left( x ^ { 2 } + 8 \right) } \right)
C) ln(60x(x+7)(x2+8))\ln \left( 60 x ( x + 7 ) \left( x ^ { 2 } + 8 \right) \right)
D) ln(4x2+2x+3)\ln \left( - 4 x ^ { 2 } + 2 x + 3 \right)
E) ln((x+7)5x3(x2+8)4)\ln \left( \frac { ( x + 7 ) ^ { 5 } } { x ^ { 3 } \left( x ^ { 2 } + 8 \right) ^ { 4 } } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find the vertical asymptote of the logarithmic function below. f(x)=log2(x4)f ( x ) = \log _ { 2 } ( x - 4 )

A) x=5x = 5
B) x=2x = 2
C) x=5x = - 5
D) x=4x = - 4
E) x=4x = 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
58
Use the properties of logarithms to simplify the logarithmic expression below. log5175\log _ { 5 } \sqrt { 175 }

A) 2log572 \log _ { 5 } 7
B) 1+12log571 + \frac { 1 } { 2 } \log _ { 5 } 7
C) 2+12log572 + \frac { 1 } { 2 } \log _ { 5 } 7
D) 2+log572 + \log _ { 5 } 7
E) 1+log571 + \log _ { 5 } 7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
59
Evaluate the logarithm log2132\log _ { 2 } \frac { 1 } { 32 } without using a calculator.

A) 5- 5
B) 44
C) 1616
D) 4- 4
E) 55
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
60
Write the logarithmic equation ln6=1.792\ln 6 = 1.792 \ldots in exponential form.

A) e1.792=6e ^ { 1.792 \ldots } = 6
B) 106=1.79210 ^ { 6 } = 1.792 \ldots
C) 2.303e1.792=62.303 e ^ { 1.792 \ldots } = 6
D) 2.303×106=1.7922.303 \times 10 ^ { 6 } = 1.792 \ldots
E) e6=1.792e ^ { 6 } = 1.792 \ldots
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
61
Approximate the solution to ln5x=3.2\ln 5 x = 3.2 . Round to 3 decimal places.

A)1.896
B)4.907
C)4.809
D)-0.446
E)316.979
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
62
Solve for x.x. ln(6x11)=0\ln ( 6 x - 11 ) = 0

A) x=4x = 4
B) x=2x = 2
C) x=5x = 5
D) x=116x = \frac { 11 } { 6 }
E) x=72x = \frac { 7 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
63
Solve the exponential equation algebraically. Approximate the result to three decimal places. e2x5ex+4=0e ^ { 2 x } - 5 e ^ { x } + 4 = 0

A) x=0.000,1.000x = 0.000,1.000
B) x=0.000,1.386x = 0.000,1.386
C) x=0.000,4.000x = 0.000,4.000
D) x=1.000,4.000x = 1.000,4.000
E) x=1.386,4.000x = 1.386,4.000
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
64
Use algebraic procedures to find the exact solution of the equation lnx=12ln(2x+199)+12ln9\ln x = \frac { 1 } { 2 } \ln \left( 2 x + \frac { 19 } { 9 } \right) + \frac { 1 } { 2 } \ln 9 .

A)-1, 19
B) 1914- \frac { 19 } { 14 }
C)2, 9
D)19
E)1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
65
Approximate the solution to ln(x+3)lnx=1\ln ( x + 3 ) - \ln x = 1 . Round to 3 decimal places.

A)-0.632
B)0.250
C)1.746
D)2.718
E)0.333
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
66
Solve the exponential equation algebraically. Approximate the result to three decimal places. 4006+e6x=8\frac { 400 } { 6 + e ^ { 6 x } } = 8

A) x=0.671x = 0.671
B) x=infx = \inf
C) x=0.631x = 0.631
D) x=1.001x = 1.001
E) x=0.996x = 0.996
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
67
Use algebraic procedures to find the exact solution of the equation log5x+log5(x20)=3\log _ { 5 } x + \log _ { 5 } ( x - 20 ) = 3 .

A)0, -20
B)25
C)3, 5
D)-5, 25
E)5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
68
Use algebraic procedures to find the exact solution(s) of the equation below. 69x+2=12166 ^ { 9 x + 2 } = \frac { 1 } { 216 }

A) x=59x = - \frac { 5 } { 9 }
B) x=19x = \frac { 1 } { 9 }
C) x=16x = \frac { 1 } { 6 }
D) x=56x = - \frac { 5 } { 6 }
E) x=56x = \frac { 5 } { 6 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
69
Solve (12)x=8\left( \frac { 1 } { 2 } \right) ^ { x } = 8 for x.

A)1
B) 1- 1
C) 3- 3
D) 2- 2
E)no solution
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
70
The approximate lengths and diameters (in inches) of common nails are shown in the table. Find a logarithmic equation that relates the diameter yy of a common nail to its length x.x.  Length, x Diameter, y10.09520.15630.208\begin{array} { | c | c | } \hline \text { Length, } x & \text { Diameter, } y \\\hline 1 & 0.095 \\\hline 2 & 0.156 \\\hline 3 & 0.208 \\\hline\end{array}  Length, x Diameter, y40.25650.30060.342\begin{array} { | c | c | } \hline \text { Length, } x & \text { Diameter, } y \\\hline 4 & 0.256 \\\hline 5 & 0.300 \\\hline 6 & 0.342 \\\hline\end{array}

A) lny=0.095lnx+ln0.715\ln y = - 0.095 \ln x + \ln 0.715
B) lny=0.095lnxln0.715\ln y = 0.095 \ln x - \ln 0.715
C) lny=0.715lnxln0.095\ln y = 0.715 \ln x - \ln 0.095
D) lny=0.095lnxln0.715\ln y = - 0.095 \ln x - \ln 0.715
E) lny=0.715lnx+ln0.095\ln y = 0.715 \ln x + \ln 0.095
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
71
Use algebraic procedures to find the exact solution(s) of the equation below. 103x=37010 ^ { 3 - x } = 370

A) x=1+3log370x = 1 + 3 \log 370
B) x=13log370x = - 1 - 3 \log 370
C) x=1+3log370x = - 1 + 3 \log 370
D) x=3log370x = - 3 - \log 370
E) x=3log370x = 3 - \log 370
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
72
An initial investment of $4000 grows at an annual interest rate of 4% compounded continuously. How long will it take to double the investment?

A)17.33 years
B)18.33 years
C)18.00 years
D)17.00 years
E)1 year
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
73
Solve for x: 5x/3=0.00525 ^ { - x / 3 } = 0.0052 . Round to 3 decimal places.

A)9.803
B)15.777
C)20.606
D)-20.606
E)-3.268
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
74
Solve for x: 9(10x3)=239 \left( 10 ^ { x - 3 } \right) = 23 . Round to 3 decimal places.

A)3.407
B)0.407
C)1.362
D)-1.362
E)no solution
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
75
The average monthly sales yy (in billions of dollars) in retail trade in the United States from 1996 to 2005 can be approximated by the model y=22+117lnt,y = 22 + 117 \ln t, 6t156 \leq t \leq 15 where tt represents the year, with t=6t = 6 corresponding to 1996. Estimate the year in which the average monthly sales first exceeded $310 billion.

A)2001
B)2004
C)2002
D)2000
E)1996
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
76
An industrial psychologist has determined that the average percent score for an employee on a test of the employee's knowledge of the company's product is given by P=1001+24e0.15tP = \frac { 100 } { 1 + 24 e ^ { - 0.15 t } } where t is the number of weeks on the job and P is the percent score. Estimate (to the nearest week) the expected number of weeks of employment that are necessary for an employee to earn a 85% score on the test.

A)38 weeks
B)37 weeks
C)42 weeks
D)60 weeks
E)33 weeks
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
77
Apply the Inverse Property of logarithmic or exponential functions to simplify the expression below. log8642x+5\log _ { 8 } 64 ^ { 2 x + 5 }

A) 4x+104 x + 10
B) 16x+4016 x + 40
C) 82x+58 ^ { 2 x + 5 }
D) 2log8(2x+5)2 \log _ { 8 } ( 2 x + 5 )
E) 8log8(2x+5)8 \log _ { 8 } ( 2 x + 5 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
78
Approximate the solution of 16e7x=2216 e ^ { 7 x } = 22 to 3 decimal places. (You may use a graphing utility.)

A)-6.682
B)0.164
C)-1.627
D)2.229
E)0.045
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
79
Use a graphing utility to approximate the solution to log4x+log4(2x+1)=2\log _ { 4 } x + \log _ { 4 } ( 2 x + 1 ) = 2 . Round to 3 decimal places.

A)6.179
B)5.179
C)3.089
D)2.589
E)no solution
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
80
Solve for x. 23x=1282 ^ { 3 x } = 128

A) 1283\frac { 128 } { 3 }
B) 643- \frac { 64 } { 3 }
C) 73\frac { 7 } { 3 }
D) 37\frac { 3 } { 7 }
E)2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 94 في هذه المجموعة.