Deck 10: Topics From Analytic Geometry

ملء الشاشة (f)
exit full mode
سؤال
Select the correct graph of the following equations of the hyperbola and find the center of the hyperbola.
(y+4)2164(x2)2149=1\frac { ( y + 4 ) ^ { 2 } } { \frac { 1 } { 64 } } - \frac { ( x - 2 ) ^ { 2 } } { \frac { 1 } { 49 } } = 1
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the standard form of the equation of the ellipse with the given characteristics.

Foci: (0,0),(8,0)( 0,0 ) , ( 8,0 ) ; major axis of length 10.
سؤال
Graph the hyperbola.
9x225y2=2259 x ^ { 2 } - 25 y ^ { 2 } = 225
سؤال
Find the standard form of the equation of the ellipse with the given characteristics and center at the origin.
Find the standard form of the equation of the ellipse with the given characteristics and center at the origin. ​   ​<div style=padding-top: 35px>
سؤال
Describe the graph of the polar equation and find the corresponding rectangular equation. Select the correct graph.
r=5secθr = 5 \sec \theta
سؤال
Identify the conic as a circle or an ellipse then find the center.
x236+y225=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 25 } = 1
سؤال
Find the standard form of the equation of the parabola with the given characteristic(s) and vertex at the origin.

Passes through the point (3,14)\left( - 3 , \frac { 1 } { 4 } \right) ; vertical axis
سؤال
Select the polar equation of graph.
Select the polar equation of graph. ​   ​<div style=padding-top: 35px>
سؤال
A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour. If this velocity is multiplied by 2\sqrt { 2 } , the satellite will have the minimum velocity necessary to escape Earth's gravity and will follow a parabolic path with the center of Earth as the focus. (Hints: The radius of Earth is 4,000 miles.)
 A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour. If this velocity is multiplied by  \sqrt { 2 }  , the satellite will have the minimum velocity necessary to escape Earth's gravity and will follow a parabolic path with the center of Earth as the focus. (Hints: The radius of Earth is 4,000 miles.) ​   Find the distance between the surface of the Earth and the satellite when  \theta = 40 ^ { \circ }  . ​<div style=padding-top: 35px>  Find the distance between the surface of the Earth and the satellite when θ=40\theta = 40 ^ { \circ } .
سؤال
Find a polar equation of the conic with its focus at the pole.

Conics
Vertex or vertices
Parabola (5,π2)\left( 5 , - \frac { \pi } { 2 } \right)
سؤال
Graph the hyperbola.
9y29x2+72y+54x=189 y ^ { 2 } - 9 x ^ { 2 } + 72 y + 54 x = 18
سؤال
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.
x=t+1x = t + 1 y=tt+1y = \frac { t } { t + 1 }
سؤال
Find a set of parametric equations for the rectangular equation.
t=3xx=4y3\begin{array} { l } t = 3 - x \\x = 4 y - 3\end{array}
سؤال
Identify the conic by writing the equation in standard form.
4x2+9y2+16x90y+205=04 x ^ { 2 } + 9 y ^ { 2 } + 16 x - 90 y + 205 = 0
سؤال
Find a polar equation of the conic with its focus at the pole.

Conics
Eccentricity
Directrix
Hyperbola e=32e = \frac { 3 } { 2 } x=4x = - 4
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/15
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 10: Topics From Analytic Geometry
1
Select the correct graph of the following equations of the hyperbola and find the center of the hyperbola.
(y+4)2164(x2)2149=1\frac { ( y + 4 ) ^ { 2 } } { \frac { 1 } { 64 } } - \frac { ( x - 2 ) ^ { 2 } } { \frac { 1 } { 49 } } = 1
Center: (2,4)( 2 , - 4 )  Center:  ( 2 , - 4 )
2
Find the standard form of the equation of the ellipse with the given characteristics.

Foci: (0,0),(8,0)( 0,0 ) , ( 8,0 ) ; major axis of length 10.
(x4)225+y29=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1
3
Graph the hyperbola.
9x225y2=2259 x ^ { 2 } - 25 y ^ { 2 } = 225
​
4
Find the standard form of the equation of the ellipse with the given characteristics and center at the origin.
Find the standard form of the equation of the ellipse with the given characteristics and center at the origin. ​   ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
5
Describe the graph of the polar equation and find the corresponding rectangular equation. Select the correct graph.
r=5secθr = 5 \sec \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
6
Identify the conic as a circle or an ellipse then find the center.
x236+y225=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 25 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the standard form of the equation of the parabola with the given characteristic(s) and vertex at the origin.

Passes through the point (3,14)\left( - 3 , \frac { 1 } { 4 } \right) ; vertical axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
8
Select the polar equation of graph.
Select the polar equation of graph. ​   ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
9
A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour. If this velocity is multiplied by 2\sqrt { 2 } , the satellite will have the minimum velocity necessary to escape Earth's gravity and will follow a parabolic path with the center of Earth as the focus. (Hints: The radius of Earth is 4,000 miles.)
 A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour. If this velocity is multiplied by  \sqrt { 2 }  , the satellite will have the minimum velocity necessary to escape Earth's gravity and will follow a parabolic path with the center of Earth as the focus. (Hints: The radius of Earth is 4,000 miles.) ​   Find the distance between the surface of the Earth and the satellite when  \theta = 40 ^ { \circ }  . ​ Find the distance between the surface of the Earth and the satellite when θ=40\theta = 40 ^ { \circ } .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find a polar equation of the conic with its focus at the pole.

Conics
Vertex or vertices
Parabola (5,π2)\left( 5 , - \frac { \pi } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
11
Graph the hyperbola.
9y29x2+72y+54x=189 y ^ { 2 } - 9 x ^ { 2 } + 72 y + 54 x = 18
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
12
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.
x=t+1x = t + 1 y=tt+1y = \frac { t } { t + 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
13
Find a set of parametric equations for the rectangular equation.
t=3xx=4y3\begin{array} { l } t = 3 - x \\x = 4 y - 3\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
14
Identify the conic by writing the equation in standard form.
4x2+9y2+16x90y+205=04 x ^ { 2 } + 9 y ^ { 2 } + 16 x - 90 y + 205 = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find a polar equation of the conic with its focus at the pole.

Conics
Eccentricity
Directrix
Hyperbola e=32e = \frac { 3 } { 2 } x=4x = - 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 15 في هذه المجموعة.