Deck 10: Conic Sections and Analytic Geometry

ملء الشاشة (f)
exit full mode
سؤال
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,3),(0,3)( 0 , - 3 ) , ( 0,3 ) ; vertices: (0,5),(0,5)( 0 , - 5 ) , ( 0,5 )

A) x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1
B) x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
D) x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0 , - 2 \sqrt { 7 } )  and  ( 0,2 \sqrt { 7 } )  B)  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1  foci at  ( 0 , - 2 \sqrt { 7 } )  and  ( 0,2 \sqrt { 7 } )  C)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0 , - 8 )  and  ( 0,8 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0,8 )  and  ( 6,0 )  <div style=padding-top: 35px>

A) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,27)( 0 , - 2 \sqrt { 7 } ) and (0,27)( 0,2 \sqrt { 7 } )
B) x264+y236=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
foci at (0,27)( 0 , - 2 \sqrt { 7 } ) and (0,27)( 0,2 \sqrt { 7 } )
C) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,8)( 0 , - 8 ) and (0,8)( 0,8 )
D) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,8)( 0,8 ) and (6,0)( 6,0 )
سؤال
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form   Center at  ( - 1,2 ) </strong> A)  \frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , 2 )  and  ( - 1 - 3 \sqrt { 3 } , 2 )  B)  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1  foci at  ( 2 + 3 \sqrt { 3 } , - 1 )  and  ( 2 - 3 \sqrt { 3 } , - 1 )  C)  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1  foci at  ( - 3 \sqrt { 3 } , 2 )  and  ( 3 \sqrt { 3 } , 2 )  D)  \frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , - 1 )  and  ( - 1 - 3 \sqrt { 3 } , - 1 )  <div style=padding-top: 35px>
Center at (1,2)( - 1,2 )

A) (x+1)236+(y2)29=1\frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
foci at (1+33,2)( - 1 + 3 \sqrt { 3 } , 2 ) and (133,2)( - 1 - 3 \sqrt { 3 } , 2 )
B) (x+1)29+(y2)236=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
foci at (2+33,1)( 2 + 3 \sqrt { 3 } , - 1 ) and (233,1)( 2 - 3 \sqrt { 3 } , - 1 )
C) (x2)29+(y+1)236=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1
foci at (33,2)( - 3 \sqrt { 3 } , 2 ) and (33,2)( 3 \sqrt { 3 } , 2 )
D) (x2)236+(y+1)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1
foci at (1+33,1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (133,1)( - 1 - 3 \sqrt { 3 } , - 1 )
سؤال
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  B)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  C)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 6,0 )  and  ( 6,0 )  <div style=padding-top: 35px>

A) x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1
foci at (42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
B) x24+y236=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1
foci at (42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
C) x236y24=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1
foci at (42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
D) x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1
foci at (6,0)( - 6,0 ) and (6,0)( 6,0 )
سؤال
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (1,3)( 1 , - 3 ) and (1,7)( 1,7 ) ; endpoints of minor axis: (3,2)( - 3,2 ) and (5,2)( 5,2 ) ;

A) (x1)216+(y2)225=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 25 } = 1
B) (x4)216+(y5)225=1\frac { ( x - 4 ) ^ { 2 } } { 16 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
C) (x+1)216+(y+2)225=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
D) (x2)216+(y1)225=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
سؤال
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (7,0),(7,0)( - 7,0 ) , ( 7,0 ) ; vertices: (8,0),(8,0)( - 8,0 ) , ( 8,0 )

A) x264+y215=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 15 } = 1
B) x215+y264=1\frac { x ^ { 2 } } { 15 } + \frac { y ^ { 2 } } { 64 } = 1
C) x249+y215=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 15 } = 1
D) x249+y264=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 64 } = 1
سؤال
Graph the ellipse and locate the foci.
9x2=14416y29 x^{2}=144-16 y^{2}
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>

A) foci at (7,0)( \sqrt { 7 } , 0 ) and (7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
B) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
C) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
D) foci at (4,0)( 4,0 ) and (4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
سؤال
Graph the ellipse and locate the foci.
x274+y294=1\frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1
Round to the nearest tenth if necessary.
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>

A) foci (0,0.7)( 0,0.7 ) and (0,0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>
B) foci (0.7,0)( 0.7,0 ) and (0,0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>
C) foci (0,0.7)( 0,0.7 ) and (0,0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>
D) foci (0.8,0)( 0.8,0 ) and (0,0.8)( 0 , - 0.8 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis vertical with length 12;12 ; length of minor axis =6;= 6 ; center (0,0)( 0,0 )

A) x29+y236=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 36 } = 1
B) x236+y29=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1
C) x26+y236=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 36 } = 1
D) x236+y2144=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 144 } = 1
سؤال
Graph the ellipse and locate the foci.
x29+y25=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>

A) foci at (2,0)( 2,0 ) and (2,0)( - 2,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>
B) foci at (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>
C) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>
D) foci at (0,2)( 0,2 ) and (0,2)( 0 , - 2 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>
سؤال
Graph the ellipse and locate the foci.
x221+y225=1\frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>

A) foci at (0,2)( 0,2 ) and (0,2)( 0 , - 2 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>
B) foci at (2,0)( 2,0 ) and (2,0)( - 2,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>
C) foci at (0,21)( 0 , \sqrt { 21 } ) and (0,21)( 0 , - \sqrt { 21 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>
D) foci at (0,5)( 0,5 ) and (0,5)( 0 , - 5 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (3,0),(3,0);x( - 3,0 ) , ( 3,0 ) ; x -intercepts: 4- 4 and 4

A) x216+y27=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 7 } = 1
B) x27+y216=1\frac { x ^ { 2 } } { 7 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y27=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 7 } = 1
D) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
سؤال
Graph the ellipse and locate the foci.
x264+y236=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>

A) foci at (27,0)( 2 \sqrt { 7 } , 0 ) and (27,0)( - 2 \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>
B) foci at (0,27)( 0,2 \sqrt { 7 } ) and (0,27)( 0 , - 2 \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>
C) foci at (35,0)( 3 \sqrt { 5 } , 0 ) and (35,0)( - 3 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>
D) foci at (0,35)( 0,3 \sqrt { 5 } ) and (0,35)( 0 , - 3 \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis horizontal with length 20 ; length of minor axis =12;= 12 ; center (0,0)( 0,0 )

A) x2100+y236=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 36 } = 1
B) x236+y2100=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 100 } = 1
C) x220+y236=1\frac { x ^ { 2 } } { 20 } + \frac { y ^ { 2 } } { 36 } = 1
D) x2400+y2144=1\frac { x ^ { 2 } } { 400 } + \frac { y ^ { 2 } } { 144 } = 1
سؤال
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (7,4)( - 7,4 ) and (9,4)( 9,4 ) ; endpoints of minor axis: (1,1)( 1 , - 1 ) and (1,9)( 1,9 )

A) (x1)264+(y4)225=1\frac { ( x - 1 ) ^ { 2 } } { 64 } + \frac { ( y - 4 ) ^ { 2 } } { 25 } = 1
B) (x4)225+(y1)264=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { ( y - 1 ) ^ { 2 } } { 64 } = 1
C) (x+1)264+(y5)225=0\frac { ( x + 1 ) ^ { 2 } } { 64 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 0
D) (x+1)264+(y5)225=1\frac { ( x + 1 ) ^ { 2 } } { 64 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
سؤال
Graph Ellipses Not Centered at the Origin
(x+2)29+(y2)216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph the ellipse and locate the foci.
x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>

A) foci at (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>
B) foci at (3,0)( 3,0 ) and (3,0)( - 3,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>
C) foci at (25,0)( 2 \sqrt { 5 } , 0 ) and (25,0)( - 2 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>
D) foci at (0,25)( 0,2 \sqrt { 5 } ) and (0,25)( 0 , - 2 \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>
سؤال
Graph the ellipse and locate the foci.
16x2+9y2=14416 x^{2}+9 y^{2}=144
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>

A) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
B) foci at (7,0)( \sqrt { 7 } , 0 ) and (7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
C) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
D) foci at (4,0)( 4,0 ) and (4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
سؤال
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,4),(0,4);y( 0 , - 4 ) , ( 0,4 ) ; y -intercepts: 8- 8 and 8

A) x248+y264=1\frac { x ^ { 2 } } { 48 } + \frac { y ^ { 2 } } { 64 } = 1
B) x264+y248=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 48 } = 1
C) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1
D) x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1
سؤال
Graph Ellipses Not Centered at the Origin
(x2)216+(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Convert the equation to the standard form for an ellipse by completing the square on x and y.
36x2+16y2+216x64y188=036 x ^ { 2 } + 16 y ^ { 2 } + 216 x - 64 y - 188 = 0

A) (x+3)216+(y2)236=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
B) (x2)216+(y+3)236=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 36 } = 1
C) (x+3)236+(y2)216=1\frac { ( x + 3 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
D) (x3)216+(y+2)236=1\frac { ( x - 3 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
سؤال
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
y=±x210y = \pm \sqrt { x ^ { 2 } - 10 }

A) vertices: (10,0),(10,0)( - \sqrt { 10 } , 0 ) , ( \sqrt { 10 } , 0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
B) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (10,0),(10,0)( - \sqrt { 10 } , 0 ) , ( \sqrt { 10 } , 0 )
C) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )

D) vertices: (0,10),(0,10)( 0 , - \sqrt { 10 } ) , ( 0 , \sqrt { 10 } )

foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
سؤال
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
81x2100y2=810081 x ^ { 2 } - 100 y ^ { 2 } = 8100

A) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
B) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,181),(0,181)( 0 , - \sqrt { 181 } ) , ( 0 , \sqrt { 181 } )
C) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (19,0),(19,0)( - \sqrt { 19 } , 0 ) , ( \sqrt { 19 } , 0 )

D) vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 )

foci: (181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
سؤال
Convert the equation to the standard form for an ellipse by completing the square on x and y.
4x2+16y2+8x+96y+84=04 x ^ { 2 } + 16 y ^ { 2 } + 8 x + 96 y + 84 = 0

A) (x+1)216+(y+3)24=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 4 } = 1
B) (x+3)216+(y+1)24=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
C) (x+1)24+(y+3)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 3 ) ^ { 2 } } { 16 } = 1
D) (x1)216+(y3)24=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 3 ) ^ { 2 } } { 4 } = 1
سؤال
Graph Ellipses Not Centered at the Origin
(x+1)236+(y+3)29=1\frac { ( \mathrm { x } + 1 ) ^ { 2 } } { 36 } + \frac { ( \mathrm { y } + 3 ) ^ { 2 } } { 9 } = 1

A) foci at (1+33,3)( - 1 + 3 \sqrt { 3 } , - 3 ) and (133,3)( - 1 - 3 \sqrt { 3 } , - 3 )
B) foci at (3+33,1)( - 3 + 3 \sqrt { 3 } , - 1 ) and (333,1)( - 3 - 3 \sqrt { 3 } , - 1 )
C) foci at (33,3)( - 3 \sqrt { 3 } , - 3 ) and (33,3)( 3 \sqrt { 3 } , - 3 )
D) foci at (1+33,1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (133,1)( - 1 - 3 \sqrt { 3 } , - 1 )
سؤال
Additional Concepts
{x2+y2=145x+y=17\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 145 \\x + y = 17\end{array} \right.
 <strong>Additional Concepts  \left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 145 \\ x + y = 17 \end{array} \right.    </strong> A)  \{ ( 9,8 ) , ( 8,9 ) \}  B)  \{ ( - 9,8 ) , ( - 8,9 ) \}  C)  \{ ( 9 , - 8 ) , ( 8 , - 9 ) \}  D)  \{ ( - 9 , - 8 ) , ( - 8 , - 9 ) \}  <div style=padding-top: 35px>

A) {(9,8),(8,9)}\{ ( 9,8 ) , ( 8,9 ) \}
B) {(9,8),(8,9)}\{ ( - 9,8 ) , ( - 8,9 ) \}
C) {(9,8),(8,9)}\{ ( 9 , - 8 ) , ( 8 , - 9 ) \}
D) {(9,8),(8,9)}\{ ( - 9 , - 8 ) , ( - 8 , - 9 ) \}
سؤال
Graph Ellipses Not Centered at the Origin
36(x+3)2+16(y2)2=57636 ( x + 3 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 576

A) foci at (3,225)( - 3,2 - 2 \sqrt { 5 } ) and (3,2+25)( - 3,2 + 2 \sqrt { 5 } )
B) foci at (2,325)( 2 , - 3 - 2 \sqrt { 5 } ) and (2,3+25)( 2 , - 3 + 2 \sqrt { 5 } )
C) foci at (3,225)( 3,2 - 2 \sqrt { 5 } ) and (3,2+25)( 3,2 + 2 \sqrt { 5 } )
D) foci at (2,225)( - 2,2 - 2 \sqrt { 5 } ) and (2,2+25)( - 2,2 + 2 \sqrt { 5 } )
سؤال
Additional Concepts
{x225+y29=1y=3\left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\y = 3\end{array} \right.
 <strong>Additional Concepts  \left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\ y = 3 \end{array} \right.    </strong> A)  \{ ( 0,3 ) \}  B)  \{ ( 3,3 ) \}  C)  \{ ( 3,0 ) \}  D)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  <div style=padding-top: 35px>

A) {(0,3)}\{ ( 0,3 ) \}
B) {(3,3)}\{ ( 3,3 ) \}
C) {(3,0)}\{ ( 3,0 ) \}
D) {(0,3),(0,3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
سؤال
Graph Ellipses Not Centered at the Origin
25(x+2)2+36(y3)2=90025 ( x + 2 ) ^ { 2 } + 36 ( y - 3 ) ^ { 2 } = 900

A) foci at (2+11,3)( - 2 + \sqrt { 11 } , 3 ) and (211,3)( - 2 - \sqrt { 11 } , 3 )
B) foci at (3+11,2)( 3 + \sqrt { 11 } , - 2 ) and (311,2)( 3 - \sqrt { 11 } , - 2 )
C) foci at (11,3)( - \sqrt { 11 } , 3 ) and (11,3)( \sqrt { 11 } , 3 )
D) foci at (2+11,2)( - 2 + \sqrt { 11 } , - 2 ) and (211,2)( - 2 - \sqrt { 11 } , - 2 )
سؤال
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
y2100x281=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 81 } = 1

A) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,181),(0,181)( 0 , - \sqrt { 181 } ) , ( 0 , \sqrt { 181 } )
B) vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 )
foci: (181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
C) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )

D) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (9,0),(9,0)( - 9,0 ) , ( 9,0 )
سؤال
Graph Ellipses Not Centered at the Origin
9(x1)2+16(y+2)2=1449(x-1)^{2}+16(y+2)^{2}=144
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph the semi-ellipse.
y=2516x2y=-\sqrt{25-16 x^{2}}
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>  C)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Truck 2 can pass under the bridge, but Truck 1 cannot.
B) Both Truck 1 and Truck 2 can pass under the bridge.
C) Neither Truck 1 nor Truck 2 can pass under the bridge.
D) Truck 1 can pass under the bridge, but Truck 2 cannot.
سؤال
Graph Ellipses Not Centered at the Origin
(x1)29+(y3)236=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 3 ) ^ { 2 } } { 36 } = 1

A) foci at (1,333)( 1,3 - 3 \sqrt { 3 } ) and (1,3+33)( 1,3 + 3 \sqrt { 3 } )
B) foci at (3,133)( 3,1 - 3 \sqrt { 3 } ) and (3,1+33)( 3,1 + 3 \sqrt { 3 } )
C) foci at (1,333)( - 1,3 - 3 \sqrt { 3 } ) and (1,3+33)( - 1,3 + 3 \sqrt { 3 } )
D) foci at (2,333)( 2,3 - 3 \sqrt { 3 } ) and (2,3+33)( 2,3 + 3 \sqrt { 3 } )
سؤال
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
x264y216=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 16 } = 1

A) vertices: (8,0),(8,0)( - 8,0 ) , ( 8,0 )
B) vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
foci: (45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
C) vertices: (0,8),(0,8)( 0 , - 8 ) , ( 0,8 )
D) vertices: (8,0),(8,0)( - 8,0 ) , ( 8,0 )
foci: (45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
foci: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
سؤال
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
4y216x2=644 y ^ { 2 } - 16 x ^ { 2 } = 64

A) vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
B) vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
C) vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )


D) vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
سؤال
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Truck 1 can pass under the bridge, but Truck 2 cannot.
B) Both Truck 1 and Truck 2 can pass under the bridge.
C) Neither Truck 1 nor Truck 2 can pass under the bridge.
D) Truck 2 can pass under the bridge, but Truck 1 cannot.
سؤال
Additional Concepts
{x2+y2=2525x2+9y2=225\left\{\begin{array}{l}x^{2}+y^{2}=25 \\25 x^{2}+9 y^{2}=225\end{array}\right.
 <strong>Additional Concepts  \left\{\begin{array}{l} x^{2}+y^{2}=25 \\ 25 x^{2}+9 y^{2}=225 \end{array}\right.    </strong> A)  \{ ( 0,5 ) , ( 0 , - 5 ) \}  B)  \{ ( 5,0 ) , ( - 5,0 ) \}  C)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  D)  \{ ( 3,0 ) , ( - 3,0 ) \}  <div style=padding-top: 35px>

A) {(0,5),(0,5)}\{ ( 0,5 ) , ( 0 , - 5 ) \}
B) {(5,0),(5,0)}\{ ( 5,0 ) , ( - 5,0 ) \}
C) {(0,3),(0,3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
D) {(3,0),(3,0)}\{ ( 3,0 ) , ( - 3,0 ) \}
سؤال
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Both Truck 1 and Truck 2 can pass under the bridge.
B) Neither Truck 1 nor Truck 2 can pass under the bridge.
C) Truck 1 can pass under the bridge, but Truck 2 cannot.
D) Truck 2 can pass under the bridge, but Truck 1 cannot.
سؤال
Graph Ellipses Not Centered at the Origin
16(x+2)2+9(y1)2=14416(x+2)^{2}+9(y-1)^{2}=144
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>  Find the foci of the ellipse whose equation is given.
سؤال
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 16 } = 1  B)  \frac { ( y - 1 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 9 } = 1  C)  \frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1  D)  \frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1  <div style=padding-top: 35px>

A) (y1)29(x1)216=1\frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 16 } = 1
B) (y1)216(x1)29=1\frac { ( y - 1 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 9 } = 1
C) (x1)216(y1)29=1\frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1
D) (x1)29(y1)216=1\frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1
سؤال
Graph Hyperbolas Not Centered at the Origin
(x3)24(y1)29=1\frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1

A) Center: (3,1)( 3,1 ) ; Vertices: (1,1)( 1,1 ) and (5,1)( 5,1 ) ; Foci: (313,1)( 3 - \sqrt { 13 } , 1 ) and (3+13,1)( 3 + \sqrt { 13 } , 1 )
B) Center: (3,1)( - 3 , - 1 ) ; Vertices: (5,1)( - 5 , - 1 ) and (1,1)( - 1 , - 1 ) ; Foci: (313,1)( - 3 - \sqrt { 13 } , - 1 ) and (3+13,1)( - 3 + \sqrt { 13 } , - 1 )
C) Center: (3,1)( 3,1 ) ; Vertices: (1,1)( 1 , - 1 ) and (5,1)( 5 , - 1 ) ; Foci: (313,1)( 3 - \sqrt { 13 } , - 1 ) and (3+13,1)( 3 + \sqrt { 13 } , - 1 )
D) Center: (3,1)( 3,1 ) ; Vertices: (2,1)( 2,1 ) and (6,1)( 6,1 ) ; Foci: (4+13,2)( 4 + \sqrt { 13 } , 2 ) and (2+13,2)( 2 + \sqrt { 13 } , 2 )
سؤال
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) ; foci: (11,0),(11,0)( - 11,0 ) , ( - 11,0 )

A) x225y296=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 96 } = 1
B) x296y225=1\frac { x ^ { 2 } } { 96 } - \frac { y ^ { 2 } } { 25 } = 1
C) x225y2121=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 121 } = 1
D) x2121y225=1\frac { x ^ { 2 } } { 121 } - \frac { y ^ { 2 } } { 25 } = 1
سؤال
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1  B)  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1  D)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1  <div style=padding-top: 35px>

A) y225x216=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1
B) x225y216=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1
C) x216y225=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1
D) y216x225=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1
سؤال
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
9y24x2+18y+16x43=09 y ^ { 2 } - 4 x ^ { 2 } + 18 y + 16 x - 43 = 0

A) (y+1)24(x2)29=1\frac { ( y + 1 ) ^ { 2 } } { 4 } - \frac { ( x - 2 ) ^ { 2 } } { 9 } = 1
B) (y1)24(x+2)29=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x + 2 ) ^ { 2 } } { 9 } = 1
C) (y+1)29(x2)24=1\frac { ( y + 1 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
D) (x+2)29(y1)24=1\frac { ( x + 2 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
سؤال
Write Equations of Hyperbolas in Standard Form
Center: (6,1)( 6,1 ) ; Focus: (1,1)( - 1,1 ) ; Vertex: (5,1)( 5,1 )

A) (x6)2(y1)248=1( x - 6 ) ^ { 2 } - \frac { ( y - 1 ) ^ { 2 } } { 48 } = 1
B) (x6)248(y1)2=1\frac { ( x - 6 ) ^ { 2 } } { 48 } - ( y - 1 ) ^ { 2 } = 1
C) (x1)2(y6)248=1( x - 1 ) ^ { 2 } - \frac { ( y - 6 ) ^ { 2 } } { 48 } = 1
D) (x1)248(y6)2=1\frac { ( x - 1 ) ^ { 2 } } { 48 } - ( y - 6 ) ^ { 2 } = 1
سؤال
Match the equation to the graph.
x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1

A)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph Hyperbolas Centered at the Origin
y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>

A) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>
C) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>
D) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>
سؤال
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
y24x24y16x16=0y ^ { 2 } - 4 x ^ { 2 } - 4 y - 16 x - 16 = 0

A) (y2)24(x+2)2=1\frac { ( y - 2 ) ^ { 2 } } { 4 } - ( x + 2 ) ^ { 2 } = 1
B) (x2)24(y+2)2=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - ( y + 2 ) ^ { 2 } = 1
C) (y4)24(x+4)2=1\frac { ( y - 4 ) ^ { 2 } } { 4 } - ( x + 4 ) ^ { 2 } = 1
D) (x+2)2(y2)24=1( x + 2 ) ^ { 2 } - \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1
سؤال
Write Equations of Hyperbolas in Standard Form
Foci: (9,0),(9,0)( - 9,0 ) , ( 9,0 ) ; vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 )

A) x225y256=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 56 } = 1
B) y225x256=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 56 } = 1
C) x225y281=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 81 } = 1
D) y225x281=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 81 } = 1
سؤال
Graph Hyperbolas Centered at the Origin
y=±x23y=\pm \sqrt{x^{2}-3}
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>

A) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
C) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
D) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
سؤال
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 ) ; asymptote: y=310xy = \frac { 3 } { 10 } x

A) y236x2400=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 400 } = 1
B) y2400x236=1\frac { y ^ { 2 } } { 400 } - \frac { x ^ { 2 } } { 36 } = 1
C) y236x2100=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 100 } = 1
D) y2100x29=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 9 } = 1
سؤال
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1  B)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1  D)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1  <div style=padding-top: 35px>

A) x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1
B) y29x216=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1
C) x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
D) y216x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1
سؤال
Match the equation to the graph.
y24x216=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1

A)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
x2y2+6x2y+7=0x ^ { 2 } - y ^ { 2 } + 6 x - 2 y + 7 = 0

A) (x+3)2(y+1)2=1( x + 3 ) ^ { 2 } - ( y + 1 ) ^ { 2 } = 1
B) (y+3)2(x+1)2=1( y + 3 ) ^ { 2 } - ( x + 1 ) ^ { 2 } = 1
C) (x+3)2+(y+1)2=1( x + 3 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 1
D) (y+3)24(x+1)236=1\frac { ( y + 3 ) ^ { 2 } } { 4 } - \frac { ( x + 1 ) ^ { 2 } } { 36 } = 1
سؤال
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
9x24y2+18x16y43=09 x ^ { 2 } - 4 y ^ { 2 } + 18 x - 16 y - 43 = 0

A) (x+1)24(y+2)29=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
B) (x1)24(y+2)29=1\frac { ( x - 1 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
C) (x+1)24(y2)29=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
D) (x+1)29(y+2)24=1\frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1
سؤال
Graph Hyperbolas Centered at the Origin
16x29y2=14416 x^{2}-9 y^{2}=144
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>

A) Asymptotes: y=±43x\mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>
B) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>
C) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>
D) Asymptotes: y=±43x\mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>
سؤال
Graph Hyperbolas Centered at the Origin
x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    <div style=padding-top: 35px>

A) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    <div style=padding-top: 35px>
B) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    <div style=padding-top: 35px>
C) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
11ecb96a_d1c1_703f_9fac_351916337d59_TB7044_00
D) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    <div style=padding-top: 35px>
سؤال
Write Equations of Hyperbolas in Standard Form
Foci: (0,9),(0,9)( 0 , - 9 ) , ( 0,9 ) ; vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )

A) y216x265=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 65 } = 1
B) x216y265=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 65 } = 1
C) x216y281=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 81 } = 1
D) y216x281=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 81 } = 1
سؤال
Graph Hyperbolas Centered at the Origin
16y29x2=14416 y ^ { 2 } - 9 x ^ { 2 } = 144
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>

A) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>
B) Asymptotes: y=±43xy = \pm \frac { 4 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>
C) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>
D) Asymptotes: y=±43xy = \pm \frac { 4 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>
سؤال
The Parabola
1 Graph Parabolas with Vertices at the Origin
x2=8yx ^ { 2 } = 8 y

A) focus: (0,2)( 0,2 )
directrix: y=2y = - 2
B) focus: (2,0)( 2,0 )
directrix: y=2y = 2
C) focus: (2,0)( 2,0 )
directrix: x=2x = 2
D) focus: (0,2)( 0 , - 2 )
directrix: x=2x = - 2
سؤال
The Parabola
1 Graph Parabolas with Vertices at the Origin
y2=24xy ^ { 2 } = - 24 x

A) focus: (6,0)( - 6,0 )
directrix: x=6x = 6
B) focus: (0,6)( 0 , - 6 )
directrix: y=6y = 6
C) focus: (6,0)( 6,0 )
directrix: x=6x = - 6
D) focus: (6,0)( - 6,0 )
directrix: y=6\mathrm { y } = 6
سؤال
Use the center, vertices, and asymptotes to graph the hyperbola.
(y2)2(x+1)2=5(y-2)^{2}-(x+1)^{2}=5
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Use the center, vertices, and asymptotes to graph the hyperbola.
(y2)29(x1)225=1\frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Additional Concepts
y29x236=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1
 <strong>Additional Concepts  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1   </strong> A) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 ]  or  [ 3 , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 ]  and  [ 3 , \infty )  C) Domain:  ( - \infty , - 3 ]  or  [ 3 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , - 3 ]  and  [ 3 , \infty )  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>

A) Domain: (,)( - \infty , \infty )
Range: (,3]( - \infty , - 3 ] or [3,)[ 3 , \infty )
B) Domain: (,)( - \infty , \infty )
Range: (,3]( - \infty , - 3 ] and [3,)[ 3 , \infty )
C) Domain: (,3]( - \infty , - 3 ] or [3,)[ 3 , \infty )
Range: (,)( - \infty , \infty )
D) Domain: (,3]( - \infty , - 3 ] and [3,)[ 3 , \infty )
Range: (,)( - \infty , \infty )
سؤال
Solve Applied Problems Involving Hyperbolas
Two recording devices are set 3200 feet apart, with the device at point A to the west of the device at point B. At a point on a line between the devices, 400 feet from point B, a small amount of explosive is detonated. The recording devices record the time the sound reaches each one. How far directly north of site B should a second explosion be done so that the measured time difference recorded by the devices is the same as that for the first detonation?

A) 933.33933.33 feet
B) 4098.784098.78 feet
C) 1549.191549.19 feet
D) 1763.831763.83 feet
سؤال
The Parabola
1 Graph Parabolas with Vertices at the Origin
x2=28yx ^ { 2 } = - 28 y

A) focus: (0,7)( 0 , - 7 )
directrix: y=7y = 7
B) focus: (14,0)( - 14,0 )
directrix: x=7x = 7
C) focus: (0,7)( 0 , - 7 )
directrix: y=7y = -7
D) focus: (0,7)( 0,7 )
directrix: y=7y = -7

سؤال
Use the center, vertices, and asymptotes to graph the hyperbola.
(y1)24(x+4)2=4(y-1)^{2}-4(x+4)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph Hyperbolas Not Centered at the Origin
(y+2)24(x+1)2=4( \mathrm { y } + 2 ) ^ { 2 } - 4 ( \mathrm { x } + 1 ) ^ { 2 } = 4

A) Center: (1,2)( - 1 , - 2 ) ; Vertices: (1,4)( - 1 , - 4 ) and (1,0)( - 1,0 ) ; Foci: (1,25)( - 1 , - 2 - \sqrt { 5 } ) and (1,2+5)( - 1 , - 2 + \sqrt { 5 } )
B) Center: (1,2)( 1,2 ) ; Vertices: (1,0)( 1,0 ) and (1,4)( 1,4 ) ; Foci: (1,25)( 1,2 - \sqrt { 5 } ) and (1,2+5)( 1,2 + \sqrt { 5 } )
C) Center: (1,2)( - 1 , - 2 ) ; Vertices: (1,2)( 1 , - 2 ) and (1,2)( - 1,2 ) ; Foci: (1,5)( - 1 , - \sqrt { 5 } ) and (1,5)( - 1 , \sqrt { 5 } )
D) Center: (1,2)( - 1 , - 2 ) ; Vertices: (0,3)( 0 , - 3 ) and (0,1)( 0,1 ) ; Foci: (0,15)( 0 , - 1 - \sqrt { 5 } ) and (0,1+5)( 0 , - 1 + \sqrt { 5 } )
سؤال
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
4x2+y2=4y24x2=4\begin{array} { r } 4 x ^ { 2 } + y ^ { 2 } = 4 \\y ^ { 2 } - 4 x ^ { 2 } = 4\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { r } 4 x ^ { 2 } + y ^ { 2 } = 4 \\ y ^ { 2 } - 4 x ^ { 2 } = 4 \end{array}    </strong> A)  \{ ( 0 , - 2 ) , ( 0,2 ) \}  B)  \{ ( 0 , - 2 ) \}  C)  \{ ( 0,4 ) \}  D)  \{ ( 2,0 ) , ( 2,0 ) \}  <div style=padding-top: 35px>

A) {(0,2),(0,2)}\{ ( 0 , - 2 ) , ( 0,2 ) \}
B) {(0,2)}\{ ( 0 , - 2 ) \}
C) {(0,4)}\{ ( 0,4 ) \}
D) {(2,0),(2,0)}\{ ( 2,0 ) , ( 2,0 ) \}
سؤال
The Parabola
1 Graph Parabolas with Vertices at the Origin
y2=12xy ^ { 2 } = 12 x

A) focus: (3,0)( 3,0 )
directrix: x=3x = - 3
B) focus: (0,3)( 0,3 )
directrix: y=3y = - 3
C) focus: (3,0)( 3,0 )
directrix: x=3x = 3
D) focus: (0,3)( 0 , - 3 )
directrix: y=3y = - 3
سؤال
Solve Applied Problems Involving Hyperbolas
Two LORAN stations are positioned 208 miles apart along a straight shore. A ship records a time difference of 0.000970.00097 seconds between the LORAN signals. (The radio signals travel at 186,000 miles per second.) Where will the ship reach shore if it were to follow the hyperbola corresponding to this time difference? If the ship is 150 miles offshore, what is the position of the ship?

A) 14 miles from the master station, (274.2,150)( 274.2,150 )
B) 90 miles from the master station, (150,274.2)( 150,274.2 )
C) 14 miles from the master station, (150,274.2)( 150,274.2 )
D) 90 miles from the master station, (274.2,150)( 274.2,150 )
سؤال
Use the center, vertices, and asymptotes to graph the hyperbola.
(x2)24(y+2)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
A)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
x2y2=196x2+y2=196\begin{array} { l } x ^ { 2 } - y ^ { 2 } = 196 \\x ^ { 2 } + y ^ { 2 } = 196\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { l } x ^ { 2 } - y ^ { 2 } = 196 \\ x ^ { 2 } + y ^ { 2 } = 196 \end{array}    </strong> A)  \{ ( 14,0 ) , ( - 14,0 ) \}  B)  \{ ( 0,14 ) , ( 0 , - 14 ) \}  C)  \{ ( 14,0 ) \}  D)  \{ ( 0,14 ) \}  <div style=padding-top: 35px>

A) {(14,0),(14,0)}\{ ( 14,0 ) , ( - 14,0 ) \}
B) {(0,14),(0,14)}\{ ( 0,14 ) , ( 0 , - 14 ) \}
C) {(14,0)}\{ ( 14,0 ) \}
D) {(0,14)}\{ ( 0,14 ) \}
سؤال
Use the center, vertices, and asymptotes to graph the hyperbola.
(x+2)24(y1)2=4(x+2)^{2}-4(y-1)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
D)

 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
سؤال
Graph Hyperbolas Not Centered at the Origin
(y4)249(x4)29=1\frac { ( y - 4 ) ^ { 2 } } { 49 } - \frac { ( x - 4 ) ^ { 2 } } { 9 } = 1

A) Center: (4,4)( 4,4 ) ; Vertices: (4,3)( 4 , - 3 ) and (4,11)( 4,11 ) ; Foci: (4,458)( 4,4 - \sqrt { 58 } ) and (4,4+58)( 4,4 + \sqrt { 58 } )
B) Center: (4,4)( - 4 , - 4 ) ; Vertices: (4,11)( - 4 , - 11 ) and (4,3)( - 4,3 ) ; Foci: (4,458)( - 4 , - 4 - \sqrt { 58 } ) and (4,4+58)( - 4 , - 4 + \sqrt { 58 } )
C) Center: (4,4)( 4,4 ) ; Vertices: (4,458)( 4,4 - \sqrt { 58 } ) and (4,4+58)( 4,4 + \sqrt { 58 } ) ; Foci: (4,3)( 4 , - 3 ) and (4,11)( 4,11 )
D) Center: (4,4)( 4,4 ) ; Vertices: (3,2)( 3 , - 2 ) and (5,12)( 5,12 ) ; Foci: (3,558)( 3,5 - \sqrt { 58 } ) and (5,5+58)( 5,5 + \sqrt { 58 } )
سؤال
Additional Concepts
x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
 <strong>Additional Concepts  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1    </strong> A) Domain:  ( - \infty , - 3 ]  or  [ 3 , \infty )  Range:  ( - \infty , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 )  or  ( 3 , \infty )  C) Domain:  ( - \infty , - 3 ]  and  [ 3 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , \infty )  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>

A) Domain: (,3]( - \infty , - 3 ] or [3,)[ 3 , \infty )
Range: (,)( - \infty , \infty )
B) Domain: (,)( - \infty , \infty )
Range: (,3)( - \infty , - 3 ) or (3,)( 3 , \infty )
C) Domain: (,3]( - \infty , - 3 ] and [3,)[ 3 , \infty )
Range: (,)( - \infty , \infty )
D) Domain: (,)( - \infty , \infty )
Range: (,)( - \infty , \infty )
سؤال
Graph Hyperbolas Not Centered at the Origin
(x+2)264(y3)2=64( x + 2 ) ^ { 2 } - 64 ( y - 3 ) ^ { 2 } = 64

A) Center: (2,3)( - 2,3 ) ; Vertices: (10,3)( - 10,3 ) and (6,3)( 6,3 ) ; Foci: (265,3)( - 2 - \sqrt { 65 } , 3 ) and (2+65,3)( - 2 + \sqrt { 65 } , 3 )
B) Center: (2,3)( 2 , - 3 ) ; Vertices: (6,3)( - 6 , - 3 ) and (10,3)( 10 , - 3 ) ; Foci: (265,3)( 2 - \sqrt { 65 } , 3 ) and (2+65,3)( 2 + \sqrt { 65 } , 3 )
C) Center: (2,3)( - 2,3 ) ; Vertices: (9,4)( - 9,4 ) and (7,4)( 7,4 ) ; Foci: (165,4)( - 1 - \sqrt { 65 } , 4 ) and (1+65,4)( - 1 + \sqrt { 65 } , 4 )
D) Center: (2,3)( - 2,3 ) ; Vertices: (8,3)( 8,3 ) and (8,3)( - 8,3 ) ; Foci: (65,3)( - \sqrt { 65 } , 3 ) and (65,3)( \sqrt { 65 } , 3 )
سؤال
Additional Concepts
x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
 <strong>Additional Concepts  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A) Domain:  [ - 4,4 ] ^ { \downarrow }  Range:  [ - 3,3 ]  B) Domain:  [ - 3,3 ]  Range:  [ - 4,4 ]  C) Domain:  ( - 4,4 )  Range:  ( - 3,3 )  D) Domain:  [ - 4,4 ]  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>

A) Domain: [4,4][ - 4,4 ] ^ { \downarrow }
Range: [3,3][ - 3,3 ]
B) Domain: [3,3][ - 3,3 ]
Range: [4,4][ - 4,4 ]
C) Domain: (4,4)( - 4,4 )
Range: (3,3)( - 3,3 )
D) Domain: [4,4][ - 4,4 ]
Range: (,)( - \infty , \infty )
سؤال
Solve Applied Problems Involving Hyperbolas
A satellite following the hyperbolic path shown in the picture turns rapidly at (0,6)( 0,6 ) and then moves closer and closer to the line y=92xy = \frac { 9 } { 2 } x as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at (0,0)( 0,0 ) .
 <strong>Solve Applied Problems Involving Hyperbolas A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,6 )  and then moves closer and closer to the line  y = \frac { 9 } { 2 } x  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at  ( 0,0 ) .  </strong> A)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { \frac { 16 } { 9 } } = 1  B)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } = 1  C)  \frac { y ^ { 2 } } { \frac { 16 } { 9 } } - \frac { x ^ { 2 } } { 36 } = 1  D)  \frac { x ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 36 } = 1  <div style=padding-top: 35px>

A) y236x2169=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { \frac { 16 } { 9 } } = 1
B) x236y2(544)2=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } = 1
C) y2169x236=1\frac { y ^ { 2 } } { \frac { 16 } { 9 } } - \frac { x ^ { 2 } } { 36 } = 1
D) x2(544)2y236=1\frac { x ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 36 } = 1
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/228
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 10: Conic Sections and Analytic Geometry
1
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,3),(0,3)( 0 , - 3 ) , ( 0,3 ) ; vertices: (0,5),(0,5)( 0 , - 5 ) , ( 0,5 )

A) x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1
B) x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
D) x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
A
2
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0 , - 2 \sqrt { 7 } )  and  ( 0,2 \sqrt { 7 } )  B)  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1  foci at  ( 0 , - 2 \sqrt { 7 } )  and  ( 0,2 \sqrt { 7 } )  C)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0 , - 8 )  and  ( 0,8 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0,8 )  and  ( 6,0 )

A) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,27)( 0 , - 2 \sqrt { 7 } ) and (0,27)( 0,2 \sqrt { 7 } )
B) x264+y236=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
foci at (0,27)( 0 , - 2 \sqrt { 7 } ) and (0,27)( 0,2 \sqrt { 7 } )
C) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,8)( 0 , - 8 ) and (0,8)( 0,8 )
D) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,8)( 0,8 ) and (6,0)( 6,0 )
A
3
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form   Center at  ( - 1,2 ) </strong> A)  \frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , 2 )  and  ( - 1 - 3 \sqrt { 3 } , 2 )  B)  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1  foci at  ( 2 + 3 \sqrt { 3 } , - 1 )  and  ( 2 - 3 \sqrt { 3 } , - 1 )  C)  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1  foci at  ( - 3 \sqrt { 3 } , 2 )  and  ( 3 \sqrt { 3 } , 2 )  D)  \frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , - 1 )  and  ( - 1 - 3 \sqrt { 3 } , - 1 )
Center at (1,2)( - 1,2 )

A) (x+1)236+(y2)29=1\frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
foci at (1+33,2)( - 1 + 3 \sqrt { 3 } , 2 ) and (133,2)( - 1 - 3 \sqrt { 3 } , 2 )
B) (x+1)29+(y2)236=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
foci at (2+33,1)( 2 + 3 \sqrt { 3 } , - 1 ) and (233,1)( 2 - 3 \sqrt { 3 } , - 1 )
C) (x2)29+(y+1)236=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1
foci at (33,2)( - 3 \sqrt { 3 } , 2 ) and (33,2)( 3 \sqrt { 3 } , 2 )
D) (x2)236+(y+1)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1
foci at (1+33,1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (133,1)( - 1 - 3 \sqrt { 3 } , - 1 )
A
4
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  B)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  C)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 6,0 )  and  ( 6,0 )

A) x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1
foci at (42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
B) x24+y236=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1
foci at (42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
C) x236y24=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1
foci at (42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
D) x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1
foci at (6,0)( - 6,0 ) and (6,0)( 6,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
5
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (1,3)( 1 , - 3 ) and (1,7)( 1,7 ) ; endpoints of minor axis: (3,2)( - 3,2 ) and (5,2)( 5,2 ) ;

A) (x1)216+(y2)225=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 25 } = 1
B) (x4)216+(y5)225=1\frac { ( x - 4 ) ^ { 2 } } { 16 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
C) (x+1)216+(y+2)225=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
D) (x2)216+(y1)225=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (7,0),(7,0)( - 7,0 ) , ( 7,0 ) ; vertices: (8,0),(8,0)( - 8,0 ) , ( 8,0 )

A) x264+y215=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 15 } = 1
B) x215+y264=1\frac { x ^ { 2 } } { 15 } + \frac { y ^ { 2 } } { 64 } = 1
C) x249+y215=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 15 } = 1
D) x249+y264=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 64 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
7
Graph the ellipse and locate the foci.
9x2=14416y29 x^{2}=144-16 y^{2}
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )

A) foci at (7,0)( \sqrt { 7 } , 0 ) and (7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
B) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
C) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
D) foci at (4,0)( 4,0 ) and (4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
8
Graph the ellipse and locate the foci.
x274+y294=1\frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1
Round to the nearest tenth if necessary.
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )

A) foci (0,0.7)( 0,0.7 ) and (0,0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )
B) foci (0.7,0)( 0.7,0 ) and (0,0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )
C) foci (0,0.7)( 0,0.7 ) and (0,0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )
D) foci (0.8,0)( 0.8,0 ) and (0,0.8)( 0 , - 0.8 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis vertical with length 12;12 ; length of minor axis =6;= 6 ; center (0,0)( 0,0 )

A) x29+y236=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 36 } = 1
B) x236+y29=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1
C) x26+y236=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 36 } = 1
D) x236+y2144=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 144 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
10
Graph the ellipse and locate the foci.
x29+y25=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )

A) foci at (2,0)( 2,0 ) and (2,0)( - 2,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )
B) foci at (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )
C) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )
D) foci at (0,2)( 0,2 ) and (0,2)( 0 , - 2 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
11
Graph the ellipse and locate the foci.
x221+y225=1\frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )

A) foci at (0,2)( 0,2 ) and (0,2)( 0 , - 2 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )
B) foci at (2,0)( 2,0 ) and (2,0)( - 2,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )
C) foci at (0,21)( 0 , \sqrt { 21 } ) and (0,21)( 0 , - \sqrt { 21 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )
D) foci at (0,5)( 0,5 ) and (0,5)( 0 , - 5 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (3,0),(3,0);x( - 3,0 ) , ( 3,0 ) ; x -intercepts: 4- 4 and 4

A) x216+y27=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 7 } = 1
B) x27+y216=1\frac { x ^ { 2 } } { 7 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y27=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 7 } = 1
D) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
13
Graph the ellipse and locate the foci.
x264+y236=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )

A) foci at (27,0)( 2 \sqrt { 7 } , 0 ) and (27,0)( - 2 \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )
B) foci at (0,27)( 0,2 \sqrt { 7 } ) and (0,27)( 0 , - 2 \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )
C) foci at (35,0)( 3 \sqrt { 5 } , 0 ) and (35,0)( - 3 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )
D) foci at (0,35)( 0,3 \sqrt { 5 } ) and (0,35)( 0 , - 3 \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis horizontal with length 20 ; length of minor axis =12;= 12 ; center (0,0)( 0,0 )

A) x2100+y236=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 36 } = 1
B) x236+y2100=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 100 } = 1
C) x220+y236=1\frac { x ^ { 2 } } { 20 } + \frac { y ^ { 2 } } { 36 } = 1
D) x2400+y2144=1\frac { x ^ { 2 } } { 400 } + \frac { y ^ { 2 } } { 144 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (7,4)( - 7,4 ) and (9,4)( 9,4 ) ; endpoints of minor axis: (1,1)( 1 , - 1 ) and (1,9)( 1,9 )

A) (x1)264+(y4)225=1\frac { ( x - 1 ) ^ { 2 } } { 64 } + \frac { ( y - 4 ) ^ { 2 } } { 25 } = 1
B) (x4)225+(y1)264=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { ( y - 1 ) ^ { 2 } } { 64 } = 1
C) (x+1)264+(y5)225=0\frac { ( x + 1 ) ^ { 2 } } { 64 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 0
D) (x+1)264+(y5)225=1\frac { ( x + 1 ) ^ { 2 } } { 64 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
16
Graph Ellipses Not Centered at the Origin
(x+2)29+(y2)216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
17
Graph the ellipse and locate the foci.
x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )

A) foci at (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )
B) foci at (3,0)( 3,0 ) and (3,0)( - 3,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )
C) foci at (25,0)( 2 \sqrt { 5 } , 0 ) and (25,0)( - 2 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )
D) foci at (0,25)( 0,2 \sqrt { 5 } ) and (0,25)( 0 , - 2 \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
18
Graph the ellipse and locate the foci.
16x2+9y2=14416 x^{2}+9 y^{2}=144
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )

A) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
B) foci at (7,0)( \sqrt { 7 } , 0 ) and (7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
C) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
D) foci at (4,0)( 4,0 ) and (4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
19
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,4),(0,4);y( 0 , - 4 ) , ( 0,4 ) ; y -intercepts: 8- 8 and 8

A) x248+y264=1\frac { x ^ { 2 } } { 48 } + \frac { y ^ { 2 } } { 64 } = 1
B) x264+y248=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 48 } = 1
C) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1
D) x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
20
Graph Ellipses Not Centered at the Origin
(x2)216+(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
21
Convert the equation to the standard form for an ellipse by completing the square on x and y.
36x2+16y2+216x64y188=036 x ^ { 2 } + 16 y ^ { 2 } + 216 x - 64 y - 188 = 0

A) (x+3)216+(y2)236=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
B) (x2)216+(y+3)236=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 36 } = 1
C) (x+3)236+(y2)216=1\frac { ( x + 3 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
D) (x3)216+(y+2)236=1\frac { ( x - 3 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
22
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
y=±x210y = \pm \sqrt { x ^ { 2 } - 10 }

A) vertices: (10,0),(10,0)( - \sqrt { 10 } , 0 ) , ( \sqrt { 10 } , 0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
B) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (10,0),(10,0)( - \sqrt { 10 } , 0 ) , ( \sqrt { 10 } , 0 )
C) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )

D) vertices: (0,10),(0,10)( 0 , - \sqrt { 10 } ) , ( 0 , \sqrt { 10 } )

foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
23
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
81x2100y2=810081 x ^ { 2 } - 100 y ^ { 2 } = 8100

A) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
B) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,181),(0,181)( 0 , - \sqrt { 181 } ) , ( 0 , \sqrt { 181 } )
C) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (19,0),(19,0)( - \sqrt { 19 } , 0 ) , ( \sqrt { 19 } , 0 )

D) vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 )

foci: (181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
24
Convert the equation to the standard form for an ellipse by completing the square on x and y.
4x2+16y2+8x+96y+84=04 x ^ { 2 } + 16 y ^ { 2 } + 8 x + 96 y + 84 = 0

A) (x+1)216+(y+3)24=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 4 } = 1
B) (x+3)216+(y+1)24=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
C) (x+1)24+(y+3)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 3 ) ^ { 2 } } { 16 } = 1
D) (x1)216+(y3)24=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 3 ) ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
25
Graph Ellipses Not Centered at the Origin
(x+1)236+(y+3)29=1\frac { ( \mathrm { x } + 1 ) ^ { 2 } } { 36 } + \frac { ( \mathrm { y } + 3 ) ^ { 2 } } { 9 } = 1

A) foci at (1+33,3)( - 1 + 3 \sqrt { 3 } , - 3 ) and (133,3)( - 1 - 3 \sqrt { 3 } , - 3 )
B) foci at (3+33,1)( - 3 + 3 \sqrt { 3 } , - 1 ) and (333,1)( - 3 - 3 \sqrt { 3 } , - 1 )
C) foci at (33,3)( - 3 \sqrt { 3 } , - 3 ) and (33,3)( 3 \sqrt { 3 } , - 3 )
D) foci at (1+33,1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (133,1)( - 1 - 3 \sqrt { 3 } , - 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
26
Additional Concepts
{x2+y2=145x+y=17\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 145 \\x + y = 17\end{array} \right.
 <strong>Additional Concepts  \left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 145 \\ x + y = 17 \end{array} \right.    </strong> A)  \{ ( 9,8 ) , ( 8,9 ) \}  B)  \{ ( - 9,8 ) , ( - 8,9 ) \}  C)  \{ ( 9 , - 8 ) , ( 8 , - 9 ) \}  D)  \{ ( - 9 , - 8 ) , ( - 8 , - 9 ) \}

A) {(9,8),(8,9)}\{ ( 9,8 ) , ( 8,9 ) \}
B) {(9,8),(8,9)}\{ ( - 9,8 ) , ( - 8,9 ) \}
C) {(9,8),(8,9)}\{ ( 9 , - 8 ) , ( 8 , - 9 ) \}
D) {(9,8),(8,9)}\{ ( - 9 , - 8 ) , ( - 8 , - 9 ) \}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
27
Graph Ellipses Not Centered at the Origin
36(x+3)2+16(y2)2=57636 ( x + 3 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 576

A) foci at (3,225)( - 3,2 - 2 \sqrt { 5 } ) and (3,2+25)( - 3,2 + 2 \sqrt { 5 } )
B) foci at (2,325)( 2 , - 3 - 2 \sqrt { 5 } ) and (2,3+25)( 2 , - 3 + 2 \sqrt { 5 } )
C) foci at (3,225)( 3,2 - 2 \sqrt { 5 } ) and (3,2+25)( 3,2 + 2 \sqrt { 5 } )
D) foci at (2,225)( - 2,2 - 2 \sqrt { 5 } ) and (2,2+25)( - 2,2 + 2 \sqrt { 5 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
28
Additional Concepts
{x225+y29=1y=3\left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\y = 3\end{array} \right.
 <strong>Additional Concepts  \left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\ y = 3 \end{array} \right.    </strong> A)  \{ ( 0,3 ) \}  B)  \{ ( 3,3 ) \}  C)  \{ ( 3,0 ) \}  D)  \{ ( 0,3 ) , ( 0 , - 3 ) \}

A) {(0,3)}\{ ( 0,3 ) \}
B) {(3,3)}\{ ( 3,3 ) \}
C) {(3,0)}\{ ( 3,0 ) \}
D) {(0,3),(0,3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
29
Graph Ellipses Not Centered at the Origin
25(x+2)2+36(y3)2=90025 ( x + 2 ) ^ { 2 } + 36 ( y - 3 ) ^ { 2 } = 900

A) foci at (2+11,3)( - 2 + \sqrt { 11 } , 3 ) and (211,3)( - 2 - \sqrt { 11 } , 3 )
B) foci at (3+11,2)( 3 + \sqrt { 11 } , - 2 ) and (311,2)( 3 - \sqrt { 11 } , - 2 )
C) foci at (11,3)( - \sqrt { 11 } , 3 ) and (11,3)( \sqrt { 11 } , 3 )
D) foci at (2+11,2)( - 2 + \sqrt { 11 } , - 2 ) and (211,2)( - 2 - \sqrt { 11 } , - 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
30
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
y2100x281=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 81 } = 1

A) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,181),(0,181)( 0 , - \sqrt { 181 } ) , ( 0 , \sqrt { 181 } )
B) vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 )
foci: (181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
C) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )

D) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (9,0),(9,0)( - 9,0 ) , ( 9,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
31
Graph Ellipses Not Centered at the Origin
9(x1)2+16(y+2)2=1449(x-1)^{2}+16(y+2)^{2}=144
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
32
Graph the semi-ellipse.
y=2516x2y=-\sqrt{25-16 x^{2}}
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)

A)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)
B)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)    C)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)
D)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
33
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Truck 2 can pass under the bridge, but Truck 1 cannot.
B) Both Truck 1 and Truck 2 can pass under the bridge.
C) Neither Truck 1 nor Truck 2 can pass under the bridge.
D) Truck 1 can pass under the bridge, but Truck 2 cannot.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
34
Graph Ellipses Not Centered at the Origin
(x1)29+(y3)236=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 3 ) ^ { 2 } } { 36 } = 1

A) foci at (1,333)( 1,3 - 3 \sqrt { 3 } ) and (1,3+33)( 1,3 + 3 \sqrt { 3 } )
B) foci at (3,133)( 3,1 - 3 \sqrt { 3 } ) and (3,1+33)( 3,1 + 3 \sqrt { 3 } )
C) foci at (1,333)( - 1,3 - 3 \sqrt { 3 } ) and (1,3+33)( - 1,3 + 3 \sqrt { 3 } )
D) foci at (2,333)( 2,3 - 3 \sqrt { 3 } ) and (2,3+33)( 2,3 + 3 \sqrt { 3 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
35
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
x264y216=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 16 } = 1

A) vertices: (8,0),(8,0)( - 8,0 ) , ( 8,0 )
B) vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
foci: (45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
C) vertices: (0,8),(0,8)( 0 , - 8 ) , ( 0,8 )
D) vertices: (8,0),(8,0)( - 8,0 ) , ( 8,0 )
foci: (45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
foci: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
36
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
4y216x2=644 y ^ { 2 } - 16 x ^ { 2 } = 64

A) vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
B) vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
C) vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )


D) vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
37
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Truck 1 can pass under the bridge, but Truck 2 cannot.
B) Both Truck 1 and Truck 2 can pass under the bridge.
C) Neither Truck 1 nor Truck 2 can pass under the bridge.
D) Truck 2 can pass under the bridge, but Truck 1 cannot.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
38
Additional Concepts
{x2+y2=2525x2+9y2=225\left\{\begin{array}{l}x^{2}+y^{2}=25 \\25 x^{2}+9 y^{2}=225\end{array}\right.
 <strong>Additional Concepts  \left\{\begin{array}{l} x^{2}+y^{2}=25 \\ 25 x^{2}+9 y^{2}=225 \end{array}\right.    </strong> A)  \{ ( 0,5 ) , ( 0 , - 5 ) \}  B)  \{ ( 5,0 ) , ( - 5,0 ) \}  C)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  D)  \{ ( 3,0 ) , ( - 3,0 ) \}

A) {(0,5),(0,5)}\{ ( 0,5 ) , ( 0 , - 5 ) \}
B) {(5,0),(5,0)}\{ ( 5,0 ) , ( - 5,0 ) \}
C) {(0,3),(0,3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
D) {(3,0),(3,0)}\{ ( 3,0 ) , ( - 3,0 ) \}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
39
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Both Truck 1 and Truck 2 can pass under the bridge.
B) Neither Truck 1 nor Truck 2 can pass under the bridge.
C) Truck 1 can pass under the bridge, but Truck 2 cannot.
D) Truck 2 can pass under the bridge, but Truck 1 cannot.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
40
Graph Ellipses Not Centered at the Origin
16(x+2)2+9(y1)2=14416(x+2)^{2}+9(y-1)^{2}=144
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.

A)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.
B)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.
C)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.
D)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.  Find the foci of the ellipse whose equation is given.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 16 } = 1  B)  \frac { ( y - 1 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 9 } = 1  C)  \frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1  D)  \frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1

A) (y1)29(x1)216=1\frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 16 } = 1
B) (y1)216(x1)29=1\frac { ( y - 1 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 9 } = 1
C) (x1)216(y1)29=1\frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1
D) (x1)29(y1)216=1\frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
42
Graph Hyperbolas Not Centered at the Origin
(x3)24(y1)29=1\frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1

A) Center: (3,1)( 3,1 ) ; Vertices: (1,1)( 1,1 ) and (5,1)( 5,1 ) ; Foci: (313,1)( 3 - \sqrt { 13 } , 1 ) and (3+13,1)( 3 + \sqrt { 13 } , 1 )
B) Center: (3,1)( - 3 , - 1 ) ; Vertices: (5,1)( - 5 , - 1 ) and (1,1)( - 1 , - 1 ) ; Foci: (313,1)( - 3 - \sqrt { 13 } , - 1 ) and (3+13,1)( - 3 + \sqrt { 13 } , - 1 )
C) Center: (3,1)( 3,1 ) ; Vertices: (1,1)( 1 , - 1 ) and (5,1)( 5 , - 1 ) ; Foci: (313,1)( 3 - \sqrt { 13 } , - 1 ) and (3+13,1)( 3 + \sqrt { 13 } , - 1 )
D) Center: (3,1)( 3,1 ) ; Vertices: (2,1)( 2,1 ) and (6,1)( 6,1 ) ; Foci: (4+13,2)( 4 + \sqrt { 13 } , 2 ) and (2+13,2)( 2 + \sqrt { 13 } , 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
43
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) ; foci: (11,0),(11,0)( - 11,0 ) , ( - 11,0 )

A) x225y296=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 96 } = 1
B) x296y225=1\frac { x ^ { 2 } } { 96 } - \frac { y ^ { 2 } } { 25 } = 1
C) x225y2121=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 121 } = 1
D) x2121y225=1\frac { x ^ { 2 } } { 121 } - \frac { y ^ { 2 } } { 25 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
44
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1  B)  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1  D)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1

A) y225x216=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1
B) x225y216=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1
C) x216y225=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1
D) y216x225=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
45
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
9y24x2+18y+16x43=09 y ^ { 2 } - 4 x ^ { 2 } + 18 y + 16 x - 43 = 0

A) (y+1)24(x2)29=1\frac { ( y + 1 ) ^ { 2 } } { 4 } - \frac { ( x - 2 ) ^ { 2 } } { 9 } = 1
B) (y1)24(x+2)29=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x + 2 ) ^ { 2 } } { 9 } = 1
C) (y+1)29(x2)24=1\frac { ( y + 1 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
D) (x+2)29(y1)24=1\frac { ( x + 2 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
46
Write Equations of Hyperbolas in Standard Form
Center: (6,1)( 6,1 ) ; Focus: (1,1)( - 1,1 ) ; Vertex: (5,1)( 5,1 )

A) (x6)2(y1)248=1( x - 6 ) ^ { 2 } - \frac { ( y - 1 ) ^ { 2 } } { 48 } = 1
B) (x6)248(y1)2=1\frac { ( x - 6 ) ^ { 2 } } { 48 } - ( y - 1 ) ^ { 2 } = 1
C) (x1)2(y6)248=1( x - 1 ) ^ { 2 } - \frac { ( y - 6 ) ^ { 2 } } { 48 } = 1
D) (x1)248(y6)2=1\frac { ( x - 1 ) ^ { 2 } } { 48 } - ( y - 6 ) ^ { 2 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
47
Match the equation to the graph.
x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1

A)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
B)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
C)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
D)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
48
Graph Hyperbolas Centered at the Origin
y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x

A) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x
C) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x
D) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
49
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
y24x24y16x16=0y ^ { 2 } - 4 x ^ { 2 } - 4 y - 16 x - 16 = 0

A) (y2)24(x+2)2=1\frac { ( y - 2 ) ^ { 2 } } { 4 } - ( x + 2 ) ^ { 2 } = 1
B) (x2)24(y+2)2=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - ( y + 2 ) ^ { 2 } = 1
C) (y4)24(x+4)2=1\frac { ( y - 4 ) ^ { 2 } } { 4 } - ( x + 4 ) ^ { 2 } = 1
D) (x+2)2(y2)24=1( x + 2 ) ^ { 2 } - \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
50
Write Equations of Hyperbolas in Standard Form
Foci: (9,0),(9,0)( - 9,0 ) , ( 9,0 ) ; vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 )

A) x225y256=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 56 } = 1
B) y225x256=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 56 } = 1
C) x225y281=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 81 } = 1
D) y225x281=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 81 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
51
Graph Hyperbolas Centered at the Origin
y=±x23y=\pm \sqrt{x^{2}-3}
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x

A) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
C) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x
D) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
52
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 ) ; asymptote: y=310xy = \frac { 3 } { 10 } x

A) y236x2400=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 400 } = 1
B) y2400x236=1\frac { y ^ { 2 } } { 400 } - \frac { x ^ { 2 } } { 36 } = 1
C) y236x2100=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 100 } = 1
D) y2100x29=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 9 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1  B)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1  D)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1

A) x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1
B) y29x216=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1
C) x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
D) y216x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
54
Match the equation to the graph.
y24x216=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1

A)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
B)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
C)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
D)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
55
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
x2y2+6x2y+7=0x ^ { 2 } - y ^ { 2 } + 6 x - 2 y + 7 = 0

A) (x+3)2(y+1)2=1( x + 3 ) ^ { 2 } - ( y + 1 ) ^ { 2 } = 1
B) (y+3)2(x+1)2=1( y + 3 ) ^ { 2 } - ( x + 1 ) ^ { 2 } = 1
C) (x+3)2+(y+1)2=1( x + 3 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 1
D) (y+3)24(x+1)236=1\frac { ( y + 3 ) ^ { 2 } } { 4 } - \frac { ( x + 1 ) ^ { 2 } } { 36 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
56
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
9x24y2+18x16y43=09 x ^ { 2 } - 4 y ^ { 2 } + 18 x - 16 y - 43 = 0

A) (x+1)24(y+2)29=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
B) (x1)24(y+2)29=1\frac { ( x - 1 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
C) (x+1)24(y2)29=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
D) (x+1)29(y+2)24=1\frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
57
Graph Hyperbolas Centered at the Origin
16x29y2=14416 x^{2}-9 y^{2}=144
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }

A) Asymptotes: y=±43x\mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
B) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
C) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
D) Asymptotes: y=±43x\mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
58
Graph Hyperbolas Centered at the Origin
x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }

A) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
B) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
C) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
11ecb96a_d1c1_703f_9fac_351916337d59_TB7044_00
D) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
59
Write Equations of Hyperbolas in Standard Form
Foci: (0,9),(0,9)( 0 , - 9 ) , ( 0,9 ) ; vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )

A) y216x265=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 65 } = 1
B) x216y265=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 65 } = 1
C) x216y281=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 81 } = 1
D) y216x281=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 81 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
60
Graph Hyperbolas Centered at the Origin
16y29x2=14416 y ^ { 2 } - 9 x ^ { 2 } = 144
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x

A) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x
B) Asymptotes: y=±43xy = \pm \frac { 4 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x
C) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x
D) Asymptotes: y=±43xy = \pm \frac { 4 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
61
The Parabola
1 Graph Parabolas with Vertices at the Origin
x2=8yx ^ { 2 } = 8 y

A) focus: (0,2)( 0,2 )
directrix: y=2y = - 2
B) focus: (2,0)( 2,0 )
directrix: y=2y = 2
C) focus: (2,0)( 2,0 )
directrix: x=2x = 2
D) focus: (0,2)( 0 , - 2 )
directrix: x=2x = - 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
62
The Parabola
1 Graph Parabolas with Vertices at the Origin
y2=24xy ^ { 2 } = - 24 x

A) focus: (6,0)( - 6,0 )
directrix: x=6x = 6
B) focus: (0,6)( 0 , - 6 )
directrix: y=6y = 6
C) focus: (6,0)( 6,0 )
directrix: x=6x = - 6
D) focus: (6,0)( - 6,0 )
directrix: y=6\mathrm { y } = 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
63
Use the center, vertices, and asymptotes to graph the hyperbola.
(y2)2(x+1)2=5(y-2)^{2}-(x+1)^{2}=5
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
64
Use the center, vertices, and asymptotes to graph the hyperbola.
(y2)29(x1)225=1\frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
65
Additional Concepts
y29x236=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1
 <strong>Additional Concepts  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1   </strong> A) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 ]  or  [ 3 , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 ]  and  [ 3 , \infty )  C) Domain:  ( - \infty , - 3 ]  or  [ 3 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , - 3 ]  and  [ 3 , \infty )  Range:  ( - \infty , \infty )

A) Domain: (,)( - \infty , \infty )
Range: (,3]( - \infty , - 3 ] or [3,)[ 3 , \infty )
B) Domain: (,)( - \infty , \infty )
Range: (,3]( - \infty , - 3 ] and [3,)[ 3 , \infty )
C) Domain: (,3]( - \infty , - 3 ] or [3,)[ 3 , \infty )
Range: (,)( - \infty , \infty )
D) Domain: (,3]( - \infty , - 3 ] and [3,)[ 3 , \infty )
Range: (,)( - \infty , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
66
Solve Applied Problems Involving Hyperbolas
Two recording devices are set 3200 feet apart, with the device at point A to the west of the device at point B. At a point on a line between the devices, 400 feet from point B, a small amount of explosive is detonated. The recording devices record the time the sound reaches each one. How far directly north of site B should a second explosion be done so that the measured time difference recorded by the devices is the same as that for the first detonation?

A) 933.33933.33 feet
B) 4098.784098.78 feet
C) 1549.191549.19 feet
D) 1763.831763.83 feet
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
67
The Parabola
1 Graph Parabolas with Vertices at the Origin
x2=28yx ^ { 2 } = - 28 y

A) focus: (0,7)( 0 , - 7 )
directrix: y=7y = 7
B) focus: (14,0)( - 14,0 )
directrix: x=7x = 7
C) focus: (0,7)( 0 , - 7 )
directrix: y=7y = -7
D) focus: (0,7)( 0,7 )
directrix: y=7y = -7

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
68
Use the center, vertices, and asymptotes to graph the hyperbola.
(y1)24(x+4)2=4(y-1)^{2}-4(x+4)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
69
Graph Hyperbolas Not Centered at the Origin
(y+2)24(x+1)2=4( \mathrm { y } + 2 ) ^ { 2 } - 4 ( \mathrm { x } + 1 ) ^ { 2 } = 4

A) Center: (1,2)( - 1 , - 2 ) ; Vertices: (1,4)( - 1 , - 4 ) and (1,0)( - 1,0 ) ; Foci: (1,25)( - 1 , - 2 - \sqrt { 5 } ) and (1,2+5)( - 1 , - 2 + \sqrt { 5 } )
B) Center: (1,2)( 1,2 ) ; Vertices: (1,0)( 1,0 ) and (1,4)( 1,4 ) ; Foci: (1,25)( 1,2 - \sqrt { 5 } ) and (1,2+5)( 1,2 + \sqrt { 5 } )
C) Center: (1,2)( - 1 , - 2 ) ; Vertices: (1,2)( 1 , - 2 ) and (1,2)( - 1,2 ) ; Foci: (1,5)( - 1 , - \sqrt { 5 } ) and (1,5)( - 1 , \sqrt { 5 } )
D) Center: (1,2)( - 1 , - 2 ) ; Vertices: (0,3)( 0 , - 3 ) and (0,1)( 0,1 ) ; Foci: (0,15)( 0 , - 1 - \sqrt { 5 } ) and (0,1+5)( 0 , - 1 + \sqrt { 5 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
70
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
4x2+y2=4y24x2=4\begin{array} { r } 4 x ^ { 2 } + y ^ { 2 } = 4 \\y ^ { 2 } - 4 x ^ { 2 } = 4\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { r } 4 x ^ { 2 } + y ^ { 2 } = 4 \\ y ^ { 2 } - 4 x ^ { 2 } = 4 \end{array}    </strong> A)  \{ ( 0 , - 2 ) , ( 0,2 ) \}  B)  \{ ( 0 , - 2 ) \}  C)  \{ ( 0,4 ) \}  D)  \{ ( 2,0 ) , ( 2,0 ) \}

A) {(0,2),(0,2)}\{ ( 0 , - 2 ) , ( 0,2 ) \}
B) {(0,2)}\{ ( 0 , - 2 ) \}
C) {(0,4)}\{ ( 0,4 ) \}
D) {(2,0),(2,0)}\{ ( 2,0 ) , ( 2,0 ) \}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
71
The Parabola
1 Graph Parabolas with Vertices at the Origin
y2=12xy ^ { 2 } = 12 x

A) focus: (3,0)( 3,0 )
directrix: x=3x = - 3
B) focus: (0,3)( 0,3 )
directrix: y=3y = - 3
C) focus: (3,0)( 3,0 )
directrix: x=3x = 3
D) focus: (0,3)( 0 , - 3 )
directrix: y=3y = - 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
72
Solve Applied Problems Involving Hyperbolas
Two LORAN stations are positioned 208 miles apart along a straight shore. A ship records a time difference of 0.000970.00097 seconds between the LORAN signals. (The radio signals travel at 186,000 miles per second.) Where will the ship reach shore if it were to follow the hyperbola corresponding to this time difference? If the ship is 150 miles offshore, what is the position of the ship?

A) 14 miles from the master station, (274.2,150)( 274.2,150 )
B) 90 miles from the master station, (150,274.2)( 150,274.2 )
C) 14 miles from the master station, (150,274.2)( 150,274.2 )
D) 90 miles from the master station, (274.2,150)( 274.2,150 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
73
Use the center, vertices, and asymptotes to graph the hyperbola.
(x2)24(y+2)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
A)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
B)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
C)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
D)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
74
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
x2y2=196x2+y2=196\begin{array} { l } x ^ { 2 } - y ^ { 2 } = 196 \\x ^ { 2 } + y ^ { 2 } = 196\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { l } x ^ { 2 } - y ^ { 2 } = 196 \\ x ^ { 2 } + y ^ { 2 } = 196 \end{array}    </strong> A)  \{ ( 14,0 ) , ( - 14,0 ) \}  B)  \{ ( 0,14 ) , ( 0 , - 14 ) \}  C)  \{ ( 14,0 ) \}  D)  \{ ( 0,14 ) \}

A) {(14,0),(14,0)}\{ ( 14,0 ) , ( - 14,0 ) \}
B) {(0,14),(0,14)}\{ ( 0,14 ) , ( 0 , - 14 ) \}
C) {(14,0)}\{ ( 14,0 ) \}
D) {(0,14)}\{ ( 0,14 ) \}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
75
Use the center, vertices, and asymptotes to graph the hyperbola.
(x+2)24(y1)2=4(x+2)^{2}-4(y-1)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)
D)

 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
76
Graph Hyperbolas Not Centered at the Origin
(y4)249(x4)29=1\frac { ( y - 4 ) ^ { 2 } } { 49 } - \frac { ( x - 4 ) ^ { 2 } } { 9 } = 1

A) Center: (4,4)( 4,4 ) ; Vertices: (4,3)( 4 , - 3 ) and (4,11)( 4,11 ) ; Foci: (4,458)( 4,4 - \sqrt { 58 } ) and (4,4+58)( 4,4 + \sqrt { 58 } )
B) Center: (4,4)( - 4 , - 4 ) ; Vertices: (4,11)( - 4 , - 11 ) and (4,3)( - 4,3 ) ; Foci: (4,458)( - 4 , - 4 - \sqrt { 58 } ) and (4,4+58)( - 4 , - 4 + \sqrt { 58 } )
C) Center: (4,4)( 4,4 ) ; Vertices: (4,458)( 4,4 - \sqrt { 58 } ) and (4,4+58)( 4,4 + \sqrt { 58 } ) ; Foci: (4,3)( 4 , - 3 ) and (4,11)( 4,11 )
D) Center: (4,4)( 4,4 ) ; Vertices: (3,2)( 3 , - 2 ) and (5,12)( 5,12 ) ; Foci: (3,558)( 3,5 - \sqrt { 58 } ) and (5,5+58)( 5,5 + \sqrt { 58 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
77
Additional Concepts
x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
 <strong>Additional Concepts  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1    </strong> A) Domain:  ( - \infty , - 3 ]  or  [ 3 , \infty )  Range:  ( - \infty , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 )  or  ( 3 , \infty )  C) Domain:  ( - \infty , - 3 ]  and  [ 3 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , \infty )  Range:  ( - \infty , \infty )

A) Domain: (,3]( - \infty , - 3 ] or [3,)[ 3 , \infty )
Range: (,)( - \infty , \infty )
B) Domain: (,)( - \infty , \infty )
Range: (,3)( - \infty , - 3 ) or (3,)( 3 , \infty )
C) Domain: (,3]( - \infty , - 3 ] and [3,)[ 3 , \infty )
Range: (,)( - \infty , \infty )
D) Domain: (,)( - \infty , \infty )
Range: (,)( - \infty , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
78
Graph Hyperbolas Not Centered at the Origin
(x+2)264(y3)2=64( x + 2 ) ^ { 2 } - 64 ( y - 3 ) ^ { 2 } = 64

A) Center: (2,3)( - 2,3 ) ; Vertices: (10,3)( - 10,3 ) and (6,3)( 6,3 ) ; Foci: (265,3)( - 2 - \sqrt { 65 } , 3 ) and (2+65,3)( - 2 + \sqrt { 65 } , 3 )
B) Center: (2,3)( 2 , - 3 ) ; Vertices: (6,3)( - 6 , - 3 ) and (10,3)( 10 , - 3 ) ; Foci: (265,3)( 2 - \sqrt { 65 } , 3 ) and (2+65,3)( 2 + \sqrt { 65 } , 3 )
C) Center: (2,3)( - 2,3 ) ; Vertices: (9,4)( - 9,4 ) and (7,4)( 7,4 ) ; Foci: (165,4)( - 1 - \sqrt { 65 } , 4 ) and (1+65,4)( - 1 + \sqrt { 65 } , 4 )
D) Center: (2,3)( - 2,3 ) ; Vertices: (8,3)( 8,3 ) and (8,3)( - 8,3 ) ; Foci: (65,3)( - \sqrt { 65 } , 3 ) and (65,3)( \sqrt { 65 } , 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
79
Additional Concepts
x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
 <strong>Additional Concepts  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A) Domain:  [ - 4,4 ] ^ { \downarrow }  Range:  [ - 3,3 ]  B) Domain:  [ - 3,3 ]  Range:  [ - 4,4 ]  C) Domain:  ( - 4,4 )  Range:  ( - 3,3 )  D) Domain:  [ - 4,4 ]  Range:  ( - \infty , \infty )

A) Domain: [4,4][ - 4,4 ] ^ { \downarrow }
Range: [3,3][ - 3,3 ]
B) Domain: [3,3][ - 3,3 ]
Range: [4,4][ - 4,4 ]
C) Domain: (4,4)( - 4,4 )
Range: (3,3)( - 3,3 )
D) Domain: [4,4][ - 4,4 ]
Range: (,)( - \infty , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
80
Solve Applied Problems Involving Hyperbolas
A satellite following the hyperbolic path shown in the picture turns rapidly at (0,6)( 0,6 ) and then moves closer and closer to the line y=92xy = \frac { 9 } { 2 } x as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at (0,0)( 0,0 ) .
 <strong>Solve Applied Problems Involving Hyperbolas A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,6 )  and then moves closer and closer to the line  y = \frac { 9 } { 2 } x  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at  ( 0,0 ) .  </strong> A)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { \frac { 16 } { 9 } } = 1  B)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } = 1  C)  \frac { y ^ { 2 } } { \frac { 16 } { 9 } } - \frac { x ^ { 2 } } { 36 } = 1  D)  \frac { x ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 36 } = 1

A) y236x2169=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { \frac { 16 } { 9 } } = 1
B) x236y2(544)2=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } = 1
C) y2169x236=1\frac { y ^ { 2 } } { \frac { 16 } { 9 } } - \frac { x ^ { 2 } } { 36 } = 1
D) x2(544)2y236=1\frac { x ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 36 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 228 في هذه المجموعة.