Deck 13: Experimental Design and Analysis of Variance

ملء الشاشة (f)
exit full mode
سؤال
The F ratio in a completely randomized ANOVA is given by

A) MSTR/MSE.
B) MST/MSE.
C) MSE/MSTR.
D) MSE/MST.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
In an analysis of variance problem if SST = 120 and SSTR = 80, then SSE is

A) 200.
B) 40.
C) 80.
D) 120.
سؤال
In an ANOVA procedure, a term that means the same as the term "variable" is

A) factor.
B) treatment.
C) replication.
D) within-variance.
سؤال
In the ANOVA, treatments refer to

A) experimental units.
B) different levels of a factor.
C) the dependent variables.
D) statistical applications.
سؤال
An ANOVA procedure is applied to data obtained from 6 samples where each sample contains 20 observations.The critical value of F occurs with

A) 6 numerator and 20 denominator degrees of freedom.
B) 5 numerator and 20 denominator degrees of freedom.
C) 5 numerator and 114 denominator degrees of freedom.
D) 6 numerator and 114 denominator degrees of freedom.
سؤال
In the analysis of variance procedure (ANOVA), "factor" refers to

A) the dependent variable.
B) the independent variable.
C) different levels of a treatment.
D) the critical value of F.
سؤال
The mean square is the sum of squares divided by

A) the total number of observations.
B) its corresponding degrees of freedom.
C) its corresponding degrees of freedom minus one.
D) the total number of replications.
سؤال
The independent variable of interest in an ANOVA procedure is called a

A) partition.
B) treatment.
C) response.
D) factor.
سؤال
In order to determine whether or not the means of two populations are equal,

A) a t test must be performed.
B) an analysis of variance must be performed.
C) either a t test or an analysis of variance can be performed.
D) a chi-square test can be performed.
سؤال
In factorial designs, the response produced when the treatments of one factor interact with the treatments of another in influencing the response variable is known as

A) main effect.
B) replication.
C) interaction.
D) error.
سؤال
In an analysis of variance problem involving 3 treatments and 10 observations per treatment, SSE = 399.6.The MSE for this situation is

A) 133.2.
B) 13.32.
C) 14.8.
D) 30.0.
سؤال
An experimental design where the experimental units are randomly assigned to the treatments is known as

A) factor block design.
B) random factor design.
C) completely randomized design.
D) randomized treatment design.
سؤال
When an analysis of variance is performed on samples drawn from k populations, the mean square due to treatments (MSTR) is

A) SSTR/nT.
B) SSTR/(nT - 1).
C) SSTR/k.
D) SSTR/(k - 1).
سؤال
The number of times each experimental condition is observed in a factorial design is known as

A) partition.
B) replication.
C) blocking.
D) factor.
سؤال
In ANOVA, which of the following is not affected by whether or not the population means are equal?

A) χ\chi
B) between-treatments estimate of σ\sigma 2
C) within-treatments estimate of σ\sigma 2
D) ratio of between- and within-treatments estimate of σ\sigma 2
سؤال
The critical F value with 6 numerator and 60 denominator degrees of freedom at α = .05 is

A) 3.74.
B) 2.25.
C) 2.37.
D) 1.96.
سؤال
The ANOVA procedure is a statistical approach for determining whether or not the means of

A) two samples are equal.
B) two or more samples are equal.
C) two populations are equal.
D) three or more populations are equal.
سؤال
The required condition for using an ANOVA procedure on data from several populations is that the

A) selected samples are dependent on each other.
B) response variables from samples are all uniform.
C) sampled populations have equal variances.
D) sampled populations have equal means.
سؤال
In an analysis of variance where the total sample size for the experiment is nT and the number of populations is k, the mean square due to error is

A) SSE/(nT - k).
B) SSTR/(nT - k).
C) SSE/(k - 1).
D) SSTR/k.
سؤال
An ANOVA procedure is used for data that was obtained from four sample groups each comprised of five observations.The degrees of freedom for the critical value of F are

A) 3 and 20.
B) 3 and 16.
C) 4 and 17.
D) 3 and 19.
سؤال
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The sum of squares due to error equals

A) 13833.6.
B) 2073.6.
C) 5760.
D) 6000.
سؤال
Which of the following is not a required assumption for the analysis of variance?

A) The random variable of interest for each population has a normal probability distribution.
B) The variance associated with the random variable must be the same for all populations.
C) At least 2 populations are under consideration.
D) Populations under consideration have equal means.
سؤال
In an analysis of variance, one estimate of σ2 is based upon the differences between the treatment means and the

A) means of each sample.
B) overall sample mean.
C) sum of observations.
D) population means.
سؤال
Consider the following information. SSTR=6750H0:μ1=μ2=μ3=μ4SSE=8000Ha: At least one mean is different \begin{array}{ll}\mathrm{SSTR}=6750 & H 0: \mu 1=\mu 2=\mu 3=\mu 4 \\\mathrm{SSE}=8000 & H_{\mathrm{a}}: \text { At least one mean is different }\end{array}
The mean square due to treatments (MSTR) equals

A) 400.
B) 500.
C) 1687.5.
D) 2250.
سؤال
In a completely randomized design involving three treatments, the following information is provided:  Treatment 1  Treatment 2  Treatment 3  Sample Size 5105 Sample Mean 489\begin{array} { l l l l } & \text { Treatment 1 } & \text { Treatment 2 } & \text { Treatment 3 } \\\text { Sample Size } & 5 & 10 & 5 \\\text { Sample Mean } & 4 & 8 & 9\end{array}
The overall mean (the grand mean) for all the treatments is

A) 7.00.
B) 6.67.
C) 7.25.
D) 4.89.
سؤال
The process of allocating the total sum of squares and degrees of freedom to the various components is called

A) factoring.
B) blocking.
C) replicating.
D) partitioning.
سؤال
An ANOVA procedure is used for data obtained from four populations.Four samples, each comprised of 30 observations, were taken from the four populations.The numerator and denominator (respectively) degrees of freedom for the critical value of F are

A) 3 and 30.
B) 4 and 30.
C) 3 and 119.
D) 3 and 116.
سؤال
An experimental design that permits simultaneous statistical conclusions about two or more factors is a

A) randomized block design.
B) factorial design.
C) completely randomized design.
D) multiple block design.
سؤال
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The null hypothesis is to be tested at the 5% level of significance.The null hypothesis

A) should be rejected.
B) should not be rejected.
C) should be revised.
D) should not be tested.
سؤال
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The mean square due to treatments equals

A) 288.
B) 518.4.
C) 1200.
D) 8294.4.
سؤال
An ANOVA procedure is used for data obtained from five populations.Five samples, each comprised of 20 observations, were taken from the five populations.The numerator and denominator (respectively) degrees of freedom for the critical value of F are

A) 5 and 20.
B) 4 and 20.
C) 4 and 99.
D) 4 and 95.
سؤال
Consider the following information. ​
SSTR = 6750
H0: μ1 = μ2 = μ3 = μ4
SSE = 8000
Ha: At least one mean is different

The null hypothesis is to be tested at the 5% level of significance.The null hypothesis

A) should be rejected.
B) should not be rejected.
C) was designed incorrectly.
D) cannot be tested.
سؤال
In a completely randomized design involving four treatments, the following information is provided.  Treatment 1 Treatment 2 Treatment 3 Treatment 4 Sample Size 50181517 Sample Mean 32384248\begin{array}{ l cccc } &\text { Treatment } 1 &\text { Treatment } 2&\text { Treatment } 3& \text { Treatment } 4\\\text { Sample Size } & 50 & 18 & 15 & 17 \\\text { Sample Mean } & 32 & 38 & 42 & 48\end{array}
The overall mean (the grand mean) for all treatments is

A) 40.0.
B) 37.3.
C) 48.3.
D) 37.0.
سؤال
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The test statistic to test the null hypothesis equals

A) .432.
B) 1.8.
C) 4.17.
D) 28.8.
سؤال
Consider the following information. SSTR=6750H0:μ1=μ2=μ3=μ4SSE=8000Ha: At least one mean is different \begin{array}{ll}\mathrm{SSTR}=6750 & H 0: \mu 1=\mu 2=\mu 3=\mu 4 \\\mathrm{SSE}=8000 & H_{\mathrm{a}}: \text { At least one mean is different }\end{array}
If n = 5, the mean square due to error (MSE) equals

A) 400.
B) 500.
C) 1687.5.
D) 2250.
سؤال
Consider the following ANOVA table.  Source  Sum  Degrees  Mean  of Variation  of Squares  of Freedom  Square  Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array} { l l l l } \text { Source } & \text { Sum } & \text { Degrees } & \text { Mean } \\\text { of Variation } & \text { of Squares } & \text { of Freedom } & \text { Square } \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The null hypothesis for this ANOVA problem is

A) μ\mu 1 = μ\mu 2 = μ\mu 3 = μ\mu 4.
B) μ\mu 1 = μ\mu 2 = μ\mu 3 = μ\mu 4 = μ\mu 5.
C) μ\mu 1 = μ\mu 2 = μ\mu 3 = μ\mu 4 = μ\mu 5 = μ\mu 6.
D) μ\mu 1 = μ\mu 2 = ... = μ\mu 20.
سؤال
Consider the following information. SSTR=6750H0:μ1=μ2=μ3=μ4SSE=8000Ha: At least one mean is different \begin{array}{ll}\mathrm{SSTR}=6750 & H 0: \mu 1=\mu 2=\mu 3=\mu 4 \\\mathrm{SSE}=8000 & H_{\mathrm{a}}: \text { At least one mean is different }\end{array}
The test statistic to test the null hypothesis equals

A) .22.
B) .84.
C) 4.22.
D) 4.50.
سؤال
Consider the following information. ​
SSTR = 6750
H0: μ1 = μ2 = μ3 = μ4
SSE = 8000
Ha: At least one mean is different

The null hypothesis is to be tested at the 5% level of significance.The p-value is

A) less than .01.
B) between .01 and .025.
C) between .025 and .05.
D) greater than .10.
سؤال
The critical F value with 8 numerator and 29 denominator degrees of freedom at α = .01 is

A) 2.28.
B) 3.20.
C) 3.33.
D) 3.64.
سؤال
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The null hypothesis is to be tested at the 5% level of significance.The p-value is

A) greater than .10.
B) between .05 to .10.
C) between .025 to .05.
D) less than .01.
سؤال
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The null hypothesis is to be tested at the 1% level of significance.The null hypothesis

A) should be rejected.
B) should not be rejected.
C) should be revised.
D) should not be tested.
سؤال
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The null hypothesis for this ANOVA problem is

A) μ\mu 1 = μ\mu 2.
B) μ\mu 1 = μ\mu 2 = μ\mu 3.
C) μ\mu 1 = μ\mu 2 = μ\mu 3 = μ\mu 4.
D) μ\mu 1 = μ\mu 2 = ... = μ\mu 12.
سؤال
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The mean square due to error (MSE) is

A) 50.
B) 10.
C) 200.
D) 600.
سؤال
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} The number of degrees of freedom corresponding to between-treatments is

A) 18.
B) 2.
C) 4.
D) 3.
سؤال
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

If, at a 5% level of significance, we want to determine whether or not the means of the five populations are equal, the critical value of F is

A) 2.53.
B) 19.48.
C) 4.98.
D) 5.69.
سؤال
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 1803 Within Treatments (Error)  TOTAL 48018\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 180 & 3 & \\\text { Within Treatments (Error) } & & & \\\text { TOTAL } & 480 & 18 &\end{array} The mean square due to error (MSE) is

A) 60.
B) 15.
C) 18.
D) 20.
سؤال
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} The number of degrees of freedom corresponding to within-treatments is

A) 22.
B) 4.
C) 5.
D) 18.
سؤال
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).The following information is provided. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The test statistic is

A) .2.
B) 5.0.
C) 3.75.
D) 15.
سؤال
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The mean square due to treatments (MSTR) is

A) 40.00.
B) 10.00.
C) 50.00.
D) 12.00.
سؤال
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The null hypothesis is to be tested at the 1% level of significance.The p-value is

A) greater than .1.
B) between .05 to .10.
C) less than .01.
D) between .01 to .025.
سؤال
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The mean square due to treatments (MSTR) equals

A) 1.872.
B) 5.86.
C) 34.
D) 36.
سؤال
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 1803 Within Treatments (Error)  TOTAL 48018\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 180 & 3 & \\\text { Within Treatments (Error) } & & & \\\text { TOTAL } & 480 & 18 &\end{array} The test statistic is

A) 2.25.
B) 6.00.
C) 2.67.
D) 3.00.
سؤال
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The test statistic to test the null hypothesis equals

A) .944.
B) 1.06.
C) 3.13.
D) 19.231.
سؤال
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The mean square due to error (MSE) equals

A) 1.872.
B) 5.86.
C) 34.
D) 36.
سؤال
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. SSTR =200= 200 (Sum of Squares Due to Treatments)
SST =800= 800 (Total Sum of Squares)
The sum of squares due to error (SSE) is

A) 1000.
B) 600.
C) 200.
D) 1600.
سؤال
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The number of degrees of freedom corresponding to within-treatments is

A) 60.
B) 59.
C) 5.
D) 4.
سؤال
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 1803 Within Treatments (Error)  TOTAL 48018\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 180 & 3 & \\\text { Within Treatments (Error) } & & & \\\text { TOTAL } & 480 & 18 &\end{array} The mean square due to treatments (MSTR) is

A) 20.
B) 60.
C) 18.
D) 15.
سؤال
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} The mean square due to treatments (MSTR) is

A) 36.
B) 16.
C) 64.
D) 15.
سؤال
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).The following information is provided. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

If we want to determine whether or not the means of the five populations are equal, the p-value is

A) greater than .10.
B) between .025 to .05.
C) between .01 to .025.
D) less than .01.
سؤال
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The number of degrees of freedom corresponding to between-treatments is

A) 60.
B) 59.
C) 5.
D) 4.
سؤال
The process of using the same or similar experimental units for all treatments is called

A) factoring.
B) blocking.
C) replicating.
D) partitioning.
سؤال
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} At a 5% level of significance, if we want to determine whether or not the means of the populations are equal, the conclusion of the test is that

A) all means are equal.
B) some means may be equal.
C) not all means are equal.
D) some means will never be equal.
سؤال
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} If we want to determine whether or not the means of the populations are equal, the p-value is

A) greater than .1.
B) between .05 to .1.
C) between .025 to .05.
D) less than .01.
سؤال
If we are testing for the equality of three population means, we should use the​

A) ​test statistic t.
B) ​test statistic z.
C) ​test statistic F.
D) ​test statistic χ2.
سؤال
A completely randomized design is useful when the experimental units are

A) homogeneous.
B) heterogeneous.
C) ​clustered.
D) stratified.
سؤال
In a factorial experiment, if there are x levels of factor A and y levels of factor B, there is a total of​

A) ​x + y treatment combinations​.
B) ​(x + y)/2 treatment combinations​.
C) ​2(x + y) treatment combinations.
D) ​xy treatment combinations​.
سؤال
In testing for the equality of k population means, the number of treatments is​

A) ​k.
B) ​k - 1.
C) ​nT.
D) ​nT - k.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/67
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 13: Experimental Design and Analysis of Variance
1
The F ratio in a completely randomized ANOVA is given by

A) MSTR/MSE.
B) MST/MSE.
C) MSE/MSTR.
D) MSE/MST.
MSTR/MSE.
2
In an analysis of variance problem if SST = 120 and SSTR = 80, then SSE is

A) 200.
B) 40.
C) 80.
D) 120.
40.
3
In an ANOVA procedure, a term that means the same as the term "variable" is

A) factor.
B) treatment.
C) replication.
D) within-variance.
factor.
4
In the ANOVA, treatments refer to

A) experimental units.
B) different levels of a factor.
C) the dependent variables.
D) statistical applications.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
5
An ANOVA procedure is applied to data obtained from 6 samples where each sample contains 20 observations.The critical value of F occurs with

A) 6 numerator and 20 denominator degrees of freedom.
B) 5 numerator and 20 denominator degrees of freedom.
C) 5 numerator and 114 denominator degrees of freedom.
D) 6 numerator and 114 denominator degrees of freedom.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
6
In the analysis of variance procedure (ANOVA), "factor" refers to

A) the dependent variable.
B) the independent variable.
C) different levels of a treatment.
D) the critical value of F.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
7
The mean square is the sum of squares divided by

A) the total number of observations.
B) its corresponding degrees of freedom.
C) its corresponding degrees of freedom minus one.
D) the total number of replications.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
8
The independent variable of interest in an ANOVA procedure is called a

A) partition.
B) treatment.
C) response.
D) factor.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
9
In order to determine whether or not the means of two populations are equal,

A) a t test must be performed.
B) an analysis of variance must be performed.
C) either a t test or an analysis of variance can be performed.
D) a chi-square test can be performed.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
10
In factorial designs, the response produced when the treatments of one factor interact with the treatments of another in influencing the response variable is known as

A) main effect.
B) replication.
C) interaction.
D) error.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
11
In an analysis of variance problem involving 3 treatments and 10 observations per treatment, SSE = 399.6.The MSE for this situation is

A) 133.2.
B) 13.32.
C) 14.8.
D) 30.0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
12
An experimental design where the experimental units are randomly assigned to the treatments is known as

A) factor block design.
B) random factor design.
C) completely randomized design.
D) randomized treatment design.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
13
When an analysis of variance is performed on samples drawn from k populations, the mean square due to treatments (MSTR) is

A) SSTR/nT.
B) SSTR/(nT - 1).
C) SSTR/k.
D) SSTR/(k - 1).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
14
The number of times each experimental condition is observed in a factorial design is known as

A) partition.
B) replication.
C) blocking.
D) factor.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
15
In ANOVA, which of the following is not affected by whether or not the population means are equal?

A) χ\chi
B) between-treatments estimate of σ\sigma 2
C) within-treatments estimate of σ\sigma 2
D) ratio of between- and within-treatments estimate of σ\sigma 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
16
The critical F value with 6 numerator and 60 denominator degrees of freedom at α = .05 is

A) 3.74.
B) 2.25.
C) 2.37.
D) 1.96.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
17
The ANOVA procedure is a statistical approach for determining whether or not the means of

A) two samples are equal.
B) two or more samples are equal.
C) two populations are equal.
D) three or more populations are equal.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
18
The required condition for using an ANOVA procedure on data from several populations is that the

A) selected samples are dependent on each other.
B) response variables from samples are all uniform.
C) sampled populations have equal variances.
D) sampled populations have equal means.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
19
In an analysis of variance where the total sample size for the experiment is nT and the number of populations is k, the mean square due to error is

A) SSE/(nT - k).
B) SSTR/(nT - k).
C) SSE/(k - 1).
D) SSTR/k.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
20
An ANOVA procedure is used for data that was obtained from four sample groups each comprised of five observations.The degrees of freedom for the critical value of F are

A) 3 and 20.
B) 3 and 16.
C) 4 and 17.
D) 3 and 19.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
21
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The sum of squares due to error equals

A) 13833.6.
B) 2073.6.
C) 5760.
D) 6000.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
22
Which of the following is not a required assumption for the analysis of variance?

A) The random variable of interest for each population has a normal probability distribution.
B) The variance associated with the random variable must be the same for all populations.
C) At least 2 populations are under consideration.
D) Populations under consideration have equal means.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
23
In an analysis of variance, one estimate of σ2 is based upon the differences between the treatment means and the

A) means of each sample.
B) overall sample mean.
C) sum of observations.
D) population means.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
24
Consider the following information. SSTR=6750H0:μ1=μ2=μ3=μ4SSE=8000Ha: At least one mean is different \begin{array}{ll}\mathrm{SSTR}=6750 & H 0: \mu 1=\mu 2=\mu 3=\mu 4 \\\mathrm{SSE}=8000 & H_{\mathrm{a}}: \text { At least one mean is different }\end{array}
The mean square due to treatments (MSTR) equals

A) 400.
B) 500.
C) 1687.5.
D) 2250.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
25
In a completely randomized design involving three treatments, the following information is provided:  Treatment 1  Treatment 2  Treatment 3  Sample Size 5105 Sample Mean 489\begin{array} { l l l l } & \text { Treatment 1 } & \text { Treatment 2 } & \text { Treatment 3 } \\\text { Sample Size } & 5 & 10 & 5 \\\text { Sample Mean } & 4 & 8 & 9\end{array}
The overall mean (the grand mean) for all the treatments is

A) 7.00.
B) 6.67.
C) 7.25.
D) 4.89.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
26
The process of allocating the total sum of squares and degrees of freedom to the various components is called

A) factoring.
B) blocking.
C) replicating.
D) partitioning.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
27
An ANOVA procedure is used for data obtained from four populations.Four samples, each comprised of 30 observations, were taken from the four populations.The numerator and denominator (respectively) degrees of freedom for the critical value of F are

A) 3 and 30.
B) 4 and 30.
C) 3 and 119.
D) 3 and 116.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
28
An experimental design that permits simultaneous statistical conclusions about two or more factors is a

A) randomized block design.
B) factorial design.
C) completely randomized design.
D) multiple block design.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
29
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The null hypothesis is to be tested at the 5% level of significance.The null hypothesis

A) should be rejected.
B) should not be rejected.
C) should be revised.
D) should not be tested.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
30
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The mean square due to treatments equals

A) 288.
B) 518.4.
C) 1200.
D) 8294.4.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
31
An ANOVA procedure is used for data obtained from five populations.Five samples, each comprised of 20 observations, were taken from the five populations.The numerator and denominator (respectively) degrees of freedom for the critical value of F are

A) 5 and 20.
B) 4 and 20.
C) 4 and 99.
D) 4 and 95.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
32
Consider the following information. ​
SSTR = 6750
H0: μ1 = μ2 = μ3 = μ4
SSE = 8000
Ha: At least one mean is different

The null hypothesis is to be tested at the 5% level of significance.The null hypothesis

A) should be rejected.
B) should not be rejected.
C) was designed incorrectly.
D) cannot be tested.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
33
In a completely randomized design involving four treatments, the following information is provided.  Treatment 1 Treatment 2 Treatment 3 Treatment 4 Sample Size 50181517 Sample Mean 32384248\begin{array}{ l cccc } &\text { Treatment } 1 &\text { Treatment } 2&\text { Treatment } 3& \text { Treatment } 4\\\text { Sample Size } & 50 & 18 & 15 & 17 \\\text { Sample Mean } & 32 & 38 & 42 & 48\end{array}
The overall mean (the grand mean) for all treatments is

A) 40.0.
B) 37.3.
C) 48.3.
D) 37.0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
34
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The test statistic to test the null hypothesis equals

A) .432.
B) 1.8.
C) 4.17.
D) 28.8.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
35
Consider the following information. SSTR=6750H0:μ1=μ2=μ3=μ4SSE=8000Ha: At least one mean is different \begin{array}{ll}\mathrm{SSTR}=6750 & H 0: \mu 1=\mu 2=\mu 3=\mu 4 \\\mathrm{SSE}=8000 & H_{\mathrm{a}}: \text { At least one mean is different }\end{array}
If n = 5, the mean square due to error (MSE) equals

A) 400.
B) 500.
C) 1687.5.
D) 2250.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
36
Consider the following ANOVA table.  Source  Sum  Degrees  Mean  of Variation  of Squares  of Freedom  Square  Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array} { l l l l } \text { Source } & \text { Sum } & \text { Degrees } & \text { Mean } \\\text { of Variation } & \text { of Squares } & \text { of Freedom } & \text { Square } \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The null hypothesis for this ANOVA problem is

A) μ\mu 1 = μ\mu 2 = μ\mu 3 = μ\mu 4.
B) μ\mu 1 = μ\mu 2 = μ\mu 3 = μ\mu 4 = μ\mu 5.
C) μ\mu 1 = μ\mu 2 = μ\mu 3 = μ\mu 4 = μ\mu 5 = μ\mu 6.
D) μ\mu 1 = μ\mu 2 = ... = μ\mu 20.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
37
Consider the following information. SSTR=6750H0:μ1=μ2=μ3=μ4SSE=8000Ha: At least one mean is different \begin{array}{ll}\mathrm{SSTR}=6750 & H 0: \mu 1=\mu 2=\mu 3=\mu 4 \\\mathrm{SSE}=8000 & H_{\mathrm{a}}: \text { At least one mean is different }\end{array}
The test statistic to test the null hypothesis equals

A) .22.
B) .84.
C) 4.22.
D) 4.50.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
38
Consider the following information. ​
SSTR = 6750
H0: μ1 = μ2 = μ3 = μ4
SSE = 8000
Ha: At least one mean is different

The null hypothesis is to be tested at the 5% level of significance.The p-value is

A) less than .01.
B) between .01 and .025.
C) between .025 and .05.
D) greater than .10.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
39
The critical F value with 8 numerator and 29 denominator degrees of freedom at α = .01 is

A) 2.28.
B) 3.20.
C) 3.33.
D) 3.64.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
40
Consider the following ANOVA table.  Source  of Variation  Sum  of Squares  Degrees  of Freed om  Mean  Square F Between Treatments 2073.64 Between Blocks 600051200 Error 20288 Total 29\begin{array}{llll}\begin{array}{l}\text { Source } \\\text { of Variation }\end{array} & \begin{array}{l}\text { Sum } \\\text { of Squares }\end{array} & \begin{array}{l}\text { Degrees } \\\text { of Freed om }\end{array} & \begin{array}{l}\text { Mean } \\\text { Square }\end{array}&F \\\text { Between Treatments } & 2073.6 & 4 & \\\text { Between Blocks } & 6000 & 5 & 1200 \\\text { Error } & & 20 & 288 \\\text { Total } & & 29 &\end{array}
The null hypothesis is to be tested at the 5% level of significance.The p-value is

A) greater than .10.
B) between .05 to .10.
C) between .025 to .05.
D) less than .01.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
41
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The null hypothesis is to be tested at the 1% level of significance.The null hypothesis

A) should be rejected.
B) should not be rejected.
C) should be revised.
D) should not be tested.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
42
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The null hypothesis for this ANOVA problem is

A) μ\mu 1 = μ\mu 2.
B) μ\mu 1 = μ\mu 2 = μ\mu 3.
C) μ\mu 1 = μ\mu 2 = μ\mu 3 = μ\mu 4.
D) μ\mu 1 = μ\mu 2 = ... = μ\mu 12.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
43
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The mean square due to error (MSE) is

A) 50.
B) 10.
C) 200.
D) 600.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
44
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} The number of degrees of freedom corresponding to between-treatments is

A) 18.
B) 2.
C) 4.
D) 3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
45
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

If, at a 5% level of significance, we want to determine whether or not the means of the five populations are equal, the critical value of F is

A) 2.53.
B) 19.48.
C) 4.98.
D) 5.69.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
46
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 1803 Within Treatments (Error)  TOTAL 48018\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 180 & 3 & \\\text { Within Treatments (Error) } & & & \\\text { TOTAL } & 480 & 18 &\end{array} The mean square due to error (MSE) is

A) 60.
B) 15.
C) 18.
D) 20.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
47
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} The number of degrees of freedom corresponding to within-treatments is

A) 22.
B) 4.
C) 5.
D) 18.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
48
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).The following information is provided. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The test statistic is

A) .2.
B) 5.0.
C) 3.75.
D) 15.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
49
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The mean square due to treatments (MSTR) is

A) 40.00.
B) 10.00.
C) 50.00.
D) 12.00.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
50
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The null hypothesis is to be tested at the 1% level of significance.The p-value is

A) greater than .1.
B) between .05 to .10.
C) less than .01.
D) between .01 to .025.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
51
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The mean square due to treatments (MSTR) equals

A) 1.872.
B) 5.86.
C) 34.
D) 36.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
52
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 1803 Within Treatments (Error)  TOTAL 48018\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 180 & 3 & \\\text { Within Treatments (Error) } & & & \\\text { TOTAL } & 480 & 18 &\end{array} The test statistic is

A) 2.25.
B) 6.00.
C) 2.67.
D) 3.00.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
53
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The test statistic to test the null hypothesis equals

A) .944.
B) 1.06.
C) 3.13.
D) 19.231.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
54
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments.You are given the results below.  Treatment  Observations  A 20302533 B 22262028C40302822\begin{array}{lllll}\text { Treatment } &&{\text { Observations }} \\\text { A } & 20 & 30 & 25 & 33 \\\text { B } & 22 & 26 & 20 & 28 \\\mathrm{C} & 40 & 30 & 28 & 22\end{array}
The mean square due to error (MSE) equals

A) 1.872.
B) 5.86.
C) 34.
D) 36.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
55
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. SSTR =200= 200 (Sum of Squares Due to Treatments)
SST =800= 800 (Total Sum of Squares)
The sum of squares due to error (SSE) is

A) 1000.
B) 600.
C) 200.
D) 1600.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
56
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The number of degrees of freedom corresponding to within-treatments is

A) 60.
B) 59.
C) 5.
D) 4.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
57
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 1803 Within Treatments (Error)  TOTAL 48018\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 180 & 3 & \\\text { Within Treatments (Error) } & & & \\\text { TOTAL } & 480 & 18 &\end{array} The mean square due to treatments (MSTR) is

A) 20.
B) 60.
C) 18.
D) 15.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
58
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} The mean square due to treatments (MSTR) is

A) 36.
B) 16.
C) 64.
D) 15.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
59
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).The following information is provided. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

If we want to determine whether or not the means of the five populations are equal, the p-value is

A) greater than .10.
B) between .025 to .05.
C) between .01 to .025.
D) less than .01.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
60
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations).Also, the design provided the following information. ​
SSTR = 200 (Sum of Squares Due to Treatments)
SST = 800 (Total Sum of Squares)

The number of degrees of freedom corresponding to between-treatments is

A) 60.
B) 59.
C) 5.
D) 4.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
61
The process of using the same or similar experimental units for all treatments is called

A) factoring.
B) blocking.
C) replicating.
D) partitioning.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
62
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} At a 5% level of significance, if we want to determine whether or not the means of the populations are equal, the conclusion of the test is that

A) all means are equal.
B) some means may be equal.
C) not all means are equal.
D) some means will never be equal.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
63
Part of an ANOVA table is shown below.  Source of  Sum of  Degrees of  Mean  Variation  Squares  Freedom  Square F Between Treatments 648 Within Treatments (Error) 2 TOTAL 100\begin{array} { l l l l l } \text { Source of } & \text { Sum of } & \text { Degrees of } & \text { Mean } \\\text { Variation } & \text { Squares } & \text { Freedom } & \text { Square } & F \\\text { Between Treatments } & 64 & &&8 \\\text { Within Treatments (Error) } & &&2 & \\\text { TOTAL } &100\end{array} If we want to determine whether or not the means of the populations are equal, the p-value is

A) greater than .1.
B) between .05 to .1.
C) between .025 to .05.
D) less than .01.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
64
If we are testing for the equality of three population means, we should use the​

A) ​test statistic t.
B) ​test statistic z.
C) ​test statistic F.
D) ​test statistic χ2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
65
A completely randomized design is useful when the experimental units are

A) homogeneous.
B) heterogeneous.
C) ​clustered.
D) stratified.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
66
In a factorial experiment, if there are x levels of factor A and y levels of factor B, there is a total of​

A) ​x + y treatment combinations​.
B) ​(x + y)/2 treatment combinations​.
C) ​2(x + y) treatment combinations.
D) ​xy treatment combinations​.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
67
In testing for the equality of k population means, the number of treatments is​

A) ​k.
B) ​k - 1.
C) ​nT.
D) ​nT - k.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.